DOI: 10.1002/chem.200601792

# How <sup>77</sup>Se NMR Chemical Shifts Originate from Pre- $\alpha$ , $\alpha$ , $\beta$ , and $\gamma$ Effects: Interpretation Based on Molecular Orbital Theory

### Waro Nakanishi,\*<sup>[a]</sup> Satoko Hayashi,<sup>[a]</sup> and Masahiko Hada<sup>[b]</sup>

Abstract: Plain rules founded in a theoretical background are presented that can be used to determine the structure of selenium compounds on the basis of  $\delta(Se)$  data and to predict  $\delta(Se)$  data from a given structure with satisfactory accuracy. As a first step to establish such rules, the origin of  $\delta(Se)$  is elucidated on the basis of MO theory. The Se<sup>2-</sup> ion was chosen as the standard for the analysis. The concept of the pre- $\alpha$ effect is proposed, which is defined as the downfield shift due to protonation of a lone-pair orbital of Se. The pre- $\alpha$ effect of two protons in H<sub>2</sub>Se is explained by the generation of double σ-(Se–H) and  $\sigma^*(\text{Se–H})$  through proton-

#### Introduction

Nuclear magnetic resonance spectroscopy is one of most powerful tools in chemistry:<sup>[1]</sup> NMR spectra are measured and analyzed on a daily basis to determine structures with the guidance of empirical rules.<sup>[2]</sup> <sup>77</sup>Se NMR chemical shifts  $\delta$ (Se) are also widely used to follow reactions, since they are highly sensitive to structural changes in selenium compounds.<sup>[2–5]</sup> Although empirical rules are useful for assigning

[a] Prof. Dr. W. Nakanishi, Dr. S. Hayashi Department of Material Science and Chemistry Faculty of Systems Engineering, Wakayama University 930 Sakaedani, Wakayama 640-8510 (Japan) Fax: (+81)73-457-8253 E-mail: nakanisi@sys.wakayama-u.ac.jp
[b] Prof. Dr. M. Hada Department of Chemistry Faculty of Graduate School of Science and Engineering

Tokyo Metropolitan University 1–1 Minami-osawa, Hachioji-shi, Tokyo 192-0397 (Japan)

Supporting information for this article is available on the WWW under http://www.chemeurj.org/ or from the author.

ation of the spherical Se<sup>2–</sup> ion. The orbitals, together with  $n_p(Se)$ , result in effective transitions for the pre- $\alpha$  effect. The  $\alpha$  effect is the downfield shift caused by the replacement of Se–H by Se–Me. The extension of HOMO–2 [4p<sub>y</sub>(Se)], HOMO–1 [4p<sub>x</sub>(Se)], and HOMO [4p<sub>z</sub>(Se)] over the whole Me<sub>2</sub>Se molecule is mainly responsible for the  $\alpha$  effect. The  $\beta$  effect originates not from the occupied-to-unoccupied ( $\psi_i \rightarrow \psi_a$ ) transitions but from the occu-

**Keywords:** ab initio calculations • ligand effects • NMR spectroscopy • selenium

pied-to-occupied  $(\psi_i \rightarrow \psi_i)$  transitions. Although  $\psi_i \rightarrow \psi_i$  transitions contribute to upfield shifts in Me<sub>2</sub>Se, the magnitudes become smaller as the methyl protons are substituted by Me groups one after another. The  $\gamma$  effect of upfield shifts is also analyzed, although complex. The effect of  $p(Se)-\pi(C=C)$ conjugation is analyzed in relation to the orientational effect. Contributions from each MO ( $\psi_i$ ) and each  $\psi_i \rightarrow \psi_a$ transition are evaluated separately, by using a utility program derived from the Gaussian 03 program suite (NMRANAL-NH03G). The treatment enables us to visualize and understand the origin of <sup>77</sup>Se NMR chemical shifts.

spectra, it is difficult to understand the origin of chemical shifts on the basis of such rules. It is still difficult to predict chemical shifts for a given structure with satisfactory accuracy by using empirical rules. Experimental chemists need plain rules founded in theory which can be used to determine the structure of selenium compounds on the basis of  $\delta$ (Se). With such rules, the relationship between chemical shifts and electronic structures could be considered for unknown compounds, and such considerations could create new ideas. We investigated selenium compounds by <sup>77</sup>Se NMR spectroscopy and tried to understand  $\delta$ (Se) of organic selenium compounds from a theoretical point of view. We noted the importance of the orientational effect of the Ar group on  $\delta$ (Se) of ArSeR in a uniform manner.<sup>[6,7]</sup>

The dependence of  $\delta(\text{Se})$  of selenium compounds on respective structure is elucidated here for various selenides on the basis of MO theory, as a first step in establishing rules founded on the theoretical principles. Our aim is to enable experimental chemists to understand the origin of these chemical shifts. To this end, a concept called the "pre- $\alpha$ effect" is proposed for better understanding of  $\delta(\text{Se})$ . The pre- $\alpha$  effect is defined as the downfield shift due to addition of a proton to a lone pair orbital of Se, as shown in Scheme 1. For example, the  $\delta$ (Se) value of H<sub>2</sub>Se  $\delta$ (Se: H<sub>2</sub>Se) relative to Se<sup>2-</sup> corresponds to twice the pre- $\alpha$  effect. The  $\alpha$ 



Scheme 1. Pre- $\alpha$ ,  $\alpha$ ,  $\beta$ , and  $\gamma$  effects, as well as the effect of p(Se)- $\pi$ (C=C) conjugation.

and  $\beta$  effects<sup>[3b,8]</sup> are well known as the downfield shifts in the respective processes leading, for instance, from H<sub>2</sub>Se to MeSeH and then to EtSeH. The mechanisms of the pre- $\alpha$ ,  $\alpha$ , and  $\beta$  effects are elucidated. The  $\gamma$  effect of upfield shifts is also discussed, together with its mechanism, which corresponds to the process leading from EtSeH to *n*PrSeH, for example.<sup>[3b,8]</sup> The  $\delta$  effect in *n*BuSeR relative to *n*PrSeR is also mentioned, although its magnitude is negligible. The effect of p(Se)– $\pi$ (C=C) conjugation<sup>[9]</sup> involving ethenyl and phenyl groups is analyzed together with its mechanism, in relation to the orientational effect.<sup>[7]</sup>

It is informative to employ the total absolute magnetic shielding tensors  $\sigma^{t}$  for the analysis of  $\delta$ (Se), since  $\sigma^{t}$  can be predicted with satisfactory accuracy. The  $\sigma^{t}$  are decomposed into diamagnetic ( $\sigma^{d}$ ) and paramagnetic ( $\sigma^{p}$ ) contributions [Eq. (1)].<sup>[10-12]</sup> The magnetic shielding tensors consist of three components, exemplified for  $\sigma^{p}$  in Equation (2). Since  $\sigma^{p}$  is evaluated by the coupled Hartree–Fock (CPHF) method, it can be decomposed into the contributions of the occupied orbitals or orbital–orbital transitions<sup>[13]</sup> [Eq. (3)].  $\sigma^{d}$  is expressed simply as the sum of contributions over the occupied orbitals ( $\psi_{i}$ ), as shown in Equation (4).

$$\boldsymbol{\sigma}^{t} = \boldsymbol{\sigma}^{d} + \boldsymbol{\sigma}^{p} \tag{1}$$

$$\boldsymbol{\sigma}^{\mathrm{p}} = (\boldsymbol{\sigma}_{xx}^{\mathrm{p}} + \boldsymbol{\sigma}_{yy}^{\mathrm{p}} + \boldsymbol{\sigma}_{zz}^{\mathrm{p}})/3$$
<sup>(2)</sup>

$$\boldsymbol{\sigma}^{\mathrm{p}} = \sum_{i} \sum_{a} \sum_{a} \sum_{a} \sigma_{i \to a}^{\mathrm{occ}} \boldsymbol{\sigma}_{i \to a}^{\mathrm{p}} = \sum_{i} \sum_{a} \sigma_{i}^{\mathrm{occ}} \boldsymbol{\sigma}_{i}^{\mathrm{p}}$$
(3)

$$\boldsymbol{\sigma}^{\mathrm{d}} = \sum_{i} \sum_{i} \cos^{\mathrm{d}}_{i} \tag{4}$$

While  $\boldsymbol{\sigma}^{p}$  is evaluated accurately by the CPHF method and decomposed by Equation (3),<sup>[14]</sup> we will mainly discuss  $\boldsymbol{\sigma}^{p}$  with an approximated image derived from Equation (5).<sup>[15]</sup> Since  $\boldsymbol{\sigma}_{zz,N}^{p}$  contains the  $\hat{L}_{z,N}$  operator,  $\boldsymbol{\sigma}_{zz,N}^{p}$  arises from admixtures between atomic  $p_{x}$  and  $p_{y}$  orbitals of *N* in various molecular orbitals when a magnetic field is applied. Admixtures of unoccupied molecular orbitals ( $\psi_{a}, \psi_{b},...$ ) into occupied molecular orbitals  $(\psi_i, \psi_j,...)$  mainly contribute to  $\sigma_{zz,N}^{p}$ <sup>[13]</sup> if  $\psi_i$  and  $\psi_a$  contain  $p_x(N)$  and  $p_y(N)$ , for example,  $\sigma_{xx,N}^{p}$  and  $\sigma_{yv,N}^{p}$  are understood similarly.

$$\boldsymbol{\sigma}_{zz,N}^{p} = -(\mu_{o}e^{2}/2\,m_{e}^{2})\sum_{i}\sum_{a}^{\text{occ}}\sum_{a}^{\text{unocc}}(\varepsilon_{a}-\varepsilon_{i})^{-1} \\
\times\{\langle\psi_{i}|\hat{L}_{z}|\psi_{a}\rangle\langle\psi_{a}|\hat{L}_{z,N}\,r_{N}^{-3}|\psi_{i}\rangle+\langle\psi_{i}|\hat{L}_{z,N}\,r_{N}^{-3}|\psi_{a}\rangle\langle\psi_{a}|\hat{L}_{z}|\psi_{i}\rangle\}$$
(5)

A utility program derived from Gaussian 03 (NMRA-NAL-NH03G) was applied to evaluate the contributions separately from each MO ( $\psi_i$ ) and each  $\psi_i \rightarrow \psi_a$  transition.<sup>[16]</sup> The utility program visualizes the process by which  $\delta$ (Se) arises, and this helps us to understand the origin of  $\delta$ (Se).<sup>[7]</sup>

#### **Results and Discussion**

**Calculation method**: Structures were optimized by employing the 6-311+G(3df) basis set for Se and the 6-311+G-(3d,2p) basis set for other nuclei in the Gaussian 03 program package.<sup>[17]</sup> Structural optimization was performed at the DFT level of the Becke three-parameter hybrid functional with Lee–Yang–Parr correlation functional (B3LYP).<sup>[18]</sup> The gauge-independent atomic orbital (GIAO) method<sup>[19]</sup> was applied to evaluate absolute magnetic shielding tensors of Se [ $\sigma$ (Se)] at the DFT (B3LYP) level on structures optimized with the same basis sets (GIAO-DFT method). Here  $\sigma$ (Se) is used in place of  $\sigma_{Se}$  in Equation (5), in analogy to  $\delta$ (Se).

The Möller–Plesset second-order energy correlation (MP2) method<sup>[20]</sup> was also applied to evaluate  $\sigma^t(Se)$  with the same basis sets as in the GIAO-DFT method, employing the optimized structures at the DFT level, for convenience of comparison. This is called the GIAO-MP2 method here. The  $\sigma^p(Se)$  are mainly employed to discuss  $\delta(Se)$  of selenium compounds, since  $\sigma^p(Se)$  are sharply sensitive to structural changes in selenium compounds.

Standard of  $\sigma(Se)$  for analysis: To analyze and understand the observed  $\delta(Se)$  on the basis of MO theory, a suitable standard (the simpler the better) for  $\sigma(Se)$  was searched for. The electronic state of the selenium atom is  ${}^{3}P_{2}$ , which is unsuitable for a standard, since it is not the singlet state. Therefore,  $\sigma^{d}(Se)$ ,  $\sigma^{p}(Se)$ , and  $\sigma^{t}(Se)$  of neutral and charged Se in the singlet state were calculated with the GIAO-DFT method. Table 1 lists the results, together with  $\sigma^{t}(Se)$  evaluated at the MP2 level for comparison.

Table 1 shows that 1)  $\sigma^{d}(Se)$  will not contribute so much to the change in  $\sigma^{t}(Se)$ : the difference in  $\sigma^{d}(Se)$  from Se<sup>4+</sup> to Se<sup>2-</sup> is predicted to be 43 ppm and 2)  $\sigma^{p}(Se)$  contribute predominantly to  $\sigma^{t}(Se)$ . 3) The charge at Se is not main factor controlling  $\sigma^{t}(Se)$ ; instead, 4) the practically occupied 4p electron distribution around Se strongly affects  $\sigma^{t}(Se)$ through  $\sigma^{p}(Se)$ .

© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Table 1. Absolute shielding tensors of variously charged Se in the singlet state, calculated at the DFT and MP2 levels.  $^{[a,b]}$ 

|                  | Configuration  | $\boldsymbol{\sigma}^{d}(Se)^{[c]}$ | $\boldsymbol{\sigma}^{\mathrm{p}}(\mathrm{Se})^{[\mathrm{c}]}$ | $\boldsymbol{\sigma}^{t}(Se)^{[c]}$ | $\sigma^{t}(Se)^{[d]}$ |
|------------------|----------------|-------------------------------------|----------------------------------------------------------------|-------------------------------------|------------------------|
| Se <sup>6+</sup> | $(4s)^0(4p)^0$ | 2937.4                              | 0.0                                                            | 2937.4                              | 2937.3                 |
| Se <sup>4+</sup> | $(4s)^2(4p)^0$ | 2962.6                              | 0.0                                                            | 2962.6                              | 2962.3                 |
| Se <sup>2+</sup> | $(4s)^2(4p)^2$ | 2981.8                              | 21439.4                                                        | 24 421.3                            | 24867.1                |
| Se <sup>0</sup>  | $(4s)^2(4p)^4$ | 2996.9                              | 18133.4                                                        | 21 1 30.3                           | 21777.2                |
| $Se^{2-}$        | $(4s)^2(4p)^6$ | 3005.7                              | 0.0                                                            | 3005.7                              | 3005.1                 |

[a] Calculated with the 6-311+G(3df) basis set of Gaussian 03. [b] In ppm. [c] At the DFT (B3LYP) level. [d] At the MP2 level.

Compilation of these results led us to choose  $\sigma(\text{Se: Se}^{2-})$  for the standard of  $\sigma(\text{Se})$ , since  $\sigma^d(\text{Se: Se}^{2-})$  of 3006 ppm is very close to those for usual selenium compounds (see also Table 2) and  $\sigma^p(\text{Se: Se}^{2-})=0$  ppm is most favorable for the standard. The  ${}^1\text{S}_0$  electronic state of  $\text{Se}^{2-}$  with eight valence electrons according to the octet rule is also desirable, as is its spherical electron distribution.

Analysis of  $\delta$ (Se) on the basis of MO theory: Axes of RSeR and RSeR' utilized in this work are shown in Scheme 2, together with some orbitals. The direction of the p-type lone pair orbital n<sub>p</sub>(Se) in H<sub>2</sub>Se is set to the *z* axis, which is perpendicular to the molecular plane, the bisected  $\neq$ HSeH direction is set to the *x* axis, and that perpendicular to the two is the *y* axis. Axes for symmetrical selenides (RSeR) are essentially the same as those of H<sub>2</sub>Se. However, the directions in unsymmetrical RSeR' (R > R') are usually different from those of H<sub>2</sub>Se. In this case, the Se–C<sub>R</sub> and Se–C<sub>R</sub>' directions are set to the *y* and *x* axes, respectively, and that of n<sub>p</sub>(Se) is set to the *z* axis, if possible.



Scheme 2. Axes in RSeR and RSeR', together with some orbitals. p-Type orbitals are used for Se and s-type for R and R'.

Table 2 lists  $\sigma^{d}(Se)$ ,  $\sigma^{p}(Se)$ , and  $\sigma^{t}(Se)$  of various selenides calculated by the GIAO-DFT method, together with  $\sigma^{t}(Se)$ by the GIAO-DFT method.<sup>[21]</sup> The GIAO-DFT calculations usually overestimate  $\sigma^{p}(Se)$ , due to the underestimation of orbital energy differences.<sup>[22]</sup> Therefore, it is instructive to examine the relationship between  $\sigma^{t}(Se)$  calculated with the GIAO-DFT method and those computed with the GIAO-MP2 method. The data given in Table 2, together with those of ethenyl and phenyl derivatives (see Table 8 below), were employed to plot  $\sigma^{t}(Se)$  with the GIAO-DFT method versus those with the GIAO-MP2 method.

Equation (6) shows the correlation, whereby the data for  $Se^{2-}$  are neglected<sup>[23,24]</sup> and *n* is the number of data used in the correlation. The correlation is very good (r=0.996) with a correlation constant (*a* in y=ax+b) of 1.08. The results show that the GIAO-DFT method overestimates  $\sigma^{t}(Se)$  due to the structural change by about 8% more than the GIAO-

Table 2. Calculated pre- $\alpha$ ,  $\alpha$ , and  $\beta$  effects of various selenides, together with the observed values.<sup>[a,b]</sup>

|                         |                  | GIA              | O-DFT            |                         | GL               | AO-MP2                   | Obse                  | erved                   |                   |  |
|-------------------------|------------------|------------------|------------------|-------------------------|------------------|--------------------------|-----------------------|-------------------------|-------------------|--|
| Compound                | $\sigma^{d}(Se)$ | $\sigma^{p}(Se)$ | $\sigma^{t}(Se)$ | effect <sup>[c,d]</sup> | $\sigma^{t}(Se)$ | effect <sup>[c, d]</sup> | $\delta(Se)$          | effect <sup>[d,e]</sup> | solvent           |  |
| $Se^{2-}(O_{h})$        | 3005.7           | 0.0              | 3005.7           |                         | 3005.1           |                          |                       |                         |                   |  |
| $HSe^{-}(C_{\infty v})$ | 3001.3           | -501.2           | 2500.2           | -505.5: pα              | 2628.6           | -376.5: pα               | $-447^{[f]}$          |                         | DMF               |  |
| $MeSe^{-}(C_{3v})$      | 3000.9           | -1135.8          | 1865.1           | -635.1: α               | 2124.4           | -504.2: α                | -332 <sup>[g]</sup>   | 115: α                  | $H_2O$            |  |
| $EtSe^{-}(C_s)$         | 3004.3           | -1343.3          | 1661.0           | $-204.1:\beta$          | 1929.3           | -195.1: β                | $-150^{[g]}$          | 182: β                  | $H_2O$            |  |
| $i PrSe^{-}(C_s)$       | 3009.7           | -1485.1          | 1524.6           | $-170.3:\beta$          | 1778.6           | -172.9: β                | 8.7 <sup>[g]</sup>    | 170: β                  | $H_2O$            |  |
| $t BuSe^{-}(C_s)$       | 3016.2           | -1586.7          | 1429.5           | $-145.2:\beta$          | 1655.3           | -156.4: β                | 129 <sup>[g]</sup>    | 154: β                  | $H_2O$            |  |
| $H_2Se(C_{2\nu})$       | 2998.0           | -931.3           | 2066.7           | –469.5: pα              | 2252.7           | -376.2: pα               | -331.7 <sup>[h]</sup> | 222: pα                 | $GP^{[i]}$        |  |
| MeSeH $(C_s)$           | 2998.2           | -1155.0          | 1843.2           | -223.5: α               | 2072.7           | $-180.0: \alpha$         | $-141.6^{[j]}$        | 111: α                  | GP <sup>[i]</sup> |  |
| EtSeH $(C_s)$           | 3000.1           | -1235.0          | 1765.1           | $-78.1: \beta$          | 1995.5           | -77.2: β                 | 36 <sup>[k]</sup>     | 151: β                  | CDCl <sub>3</sub> |  |
| $i$ PrSeH ( $C_s$ )     | 3004.5           | -1469.7          | 1534.8           | -154.2: β               | 1776.2           | -148.3: β                | 161 <sup>[k]</sup>    | 151: β                  | CDCl <sub>3</sub> |  |
| $t$ BuSeH ( $C_s$ )     | 3009.3           | -1553.5          | 1455.8           | -129.1: β               | 1696.2           | -125.3: β                | 289 <sup>[k]</sup>    | 144: β                  | CDCl <sub>3</sub> |  |
| $Me_2Se(C_{2\nu})$      | 2999.1           | -1349.0          | 1650.1           | -208.3: α               | 1907.4           | -172.7: α                | $0.0^{[1]}$           | 115: α                  | CDCl <sub>3</sub> |  |
| $Et_2Se(C_{2\nu})$      | 3006.2           | -1516.6          | 1489.6           | $-80.3:\beta$           | 1747.6           | -79.9: β                 | 230 <sup>[k]</sup>    | 115: β                  | CDCl <sub>3</sub> |  |
| $i \Pr_2 Se(C_2)$       | 3015.3           | -1777.1          | 1238.2           | $-103.0:\beta$          | 1476.1           | $-107.8:\beta$           | 429 <sup>[k]</sup>    | 107: β                  | CDCl <sub>3</sub> |  |
| $tBu_2Se(C_2)$          | 3027.1           | -1970.7          | 1056.4           | -99.0: β                | _[m]             | _[m]                     | 614 <sup>[k]</sup>    | 102: β                  | CDCl <sub>3</sub> |  |
| $H_{3}Se^{+}(C_{3v})$   | 2996.0           | -1081.0          | 1915.0           | -363.6: pα              | 2096.9           | -302.7: pα               |                       |                         |                   |  |
| $MeH_2Se^+(C_s)$        | 2996.8           | -1266.0          | 1730.8           | -182.4: α               | 1945.5           | -151.4: α                |                       |                         |                   |  |
| $EtH_2Se^+(C_s)$        | 2999.2           | -1310.3          | 1688.9           | $-41.9:\beta$           | 1903.3           | $-42.2:\beta$            |                       |                         |                   |  |
| $Me_{3}Se^{+}(C_{3})$   | 2997.2           | -1566.1          | 1431.1           | -161.3: α               | 1678.1           | $-229.3^{[n]}$           | 253 <sup>[g]</sup>    | 253 <sup>[n]</sup>      | $H_2O$            |  |
| $Et_{3}Se^{+}(C_{3})$   | 3008.5           | -1698.7          | 1309.8           | $-40.4:\beta$           | 1528.0           | $-50.0: \beta$           | 377 <sup>[g]</sup>    | 41: β                   | $H_2O$            |  |

[a] The 6-311+G(3df) basis set was employed for Se and the 6-311+G(3d,2p) basis set for other nuclei with Gaussian 03. [b] In ppm. [c] On the  $\sigma$ (Se) scale. [d] Values and the corresponding effects are shown. [e] On the  $\delta$ (Se) scale. [f] Ref. [38]. [g] Ref. [3a]. [h] Ref. [39] and  $\delta$ (Se) = -225.5 (neat).<sup>[40]</sup> [k] Ref. [40]. [l]  $\delta$ (Se) = 13.1 in the gas phase.<sup>[39]</sup> [m] Not calculated due to large memory requirements. [n] Relative to Me<sub>2</sub>Se, which corresponds to the pre- $\alpha$  and  $\alpha$  effects.

```
5284
```

MP2 method. Equation (7) exhibits the correlation for which the data for Se<sup>2-</sup>, HSe<sup>-</sup>, H<sub>2</sub>Se, and H<sub>3</sub>Se<sup>+[24,25]</sup> are neglected, which corresponds to those for the derivatives of selenide anions, hydrogen selenides, selenides, and selenonium ions. The very good correlation (a = 0.995 and r = 0.994) implies that the GIAO-DFT method is useful for analyzing  $\delta$ (Se), as well as the GIAO-MP2 method, if calculated values are carefully applied, especially for Se<sup>2-</sup>, HSe<sup>-</sup>, H<sub>2</sub>Se, and H<sub>3</sub>Se<sup>+</sup>.

 $\sigma^{t}(B3LYP) = 1.084 \sigma^{t}(MP2) - 390.8 \quad (n = 28, r = 0.996) \quad (6)$ 

 $\sigma^{t}(B3LYP) = 0.995 \sigma^{t}(MP2) - 233.5 \quad (n = 25, r = 0.994) \quad (7)$ 

The typical values of the pre- $\alpha$  and  $\alpha$  effects, evaluated by the GIAO-DFT method, are  $\delta = -470$  and -208 ppm, respectively, which correspond to half the values of  $\sigma^{t}(Se)$  in the processes leading from Se<sup>2-</sup> to H<sub>2</sub>Se and then to Me<sub>2</sub>Se, respectively (Table 2). The effects are predicted to be -376 and -173 ppm, respectively, by the GIAO-MP2 method. The magnitudes at the DFT level are 1.25 and 1.20 times larger than those at the MP2 level, respectively, which correspond to the particular cases in Equation (6).<sup>[26]</sup> The  $\beta$  effects for EtSeH and Et<sub>2</sub>Se are predicted to have almost the same value of -77 to -80 ppm in  $\sigma^{t}$ (Se) with both DFT and MP2 methods (Table 2). The results are in accordance with the predictions of Equation (7).

Table 3 shows the contributions from each  $\psi_i$  of the valence orbital to  $\sigma^{p}(Se)$  and the components  $\sigma^{p}(Se)_{xx}$ ,  $\sigma^{p}(Se)_{yy}$ , and  $\sigma^{p}(Se)_{zz}$  in H<sub>2</sub>Se, Me<sub>2</sub>Se, and Et<sub>2</sub>Se, together with the energies ( $\varepsilon_i$ ) and the characters of  $\psi_i$ . Table 4 collects the main contributions from each  $\psi_i \rightarrow \psi_a$  transition to  $\sigma^{p}(Se)_{xx}$ ,  $\sigma^{p}(Se)_{yy}$ , and  $\sigma^{p}(Se)_{zz}$  in H<sub>2</sub>Se, Me<sub>2</sub>Se, and Et<sub>2</sub>Se, together with the energy differences and characters of  $\psi_a$ . The data will be discussed in relation to the origin of the pre- $\alpha$ ,  $\alpha$ , and  $\beta$  effects. Tables 5 and 6 list the  $\beta$  and  $\gamma$  effects, respec-

Table 3. Contributions to  $\sigma^{p}(Se)$  and components from  $\psi_{i}$  in H<sub>2</sub>Se, Me<sub>2</sub>Se, and Et<sub>2</sub>Se, together with the energies and characters of  $\psi_{i}$ .<sup>[a-d]</sup>

|                             |        |                                                      | 11 2                                    |                       | 8                | 6        | 11                                                                  |
|-----------------------------|--------|------------------------------------------------------|-----------------------------------------|-----------------------|------------------|----------|---------------------------------------------------------------------|
| $i$ in $\psi_i$             | ε [eV] | $\boldsymbol{\sigma}^{\mathrm{p}}(\mathrm{Se})_{xx}$ | $\sigma^{\mathrm{p}}(\mathrm{Se})_{yy}$ | $\sigma^{p}(Se)_{zz}$ | $\sigma^{p}(Se)$ | Symmetry | Character                                                           |
| H <sub>2</sub> Se           |        |                                                      |                                         |                       |                  |          |                                                                     |
| $\psi_i \rightarrow \psi_i$ |        | 317.9                                                | 314.8                                   | 318.7                 | 317.1            |          |                                                                     |
| 1–14                        |        | -15.9                                                | -5.8                                    | -7.0                  | -9.6             |          | inner orbitals                                                      |
| 15                          | -19.58 | -1.4                                                 | -17.0                                   | -29.4                 | -15.9            | A1       | $\sigma[HSe_2: 4s(Se)]$                                             |
| 16                          | -11.53 | -247.4                                               | -9.6                                    | -482.3                | -246.4           | B2       | $\sigma$ [H <sub>2</sub> Se b <sub>2</sub> : 4p <sub>y</sub> (Se)]  |
| 17                          | -9.86  | -4.5                                                 | -215.4                                  | -831.5                | -350.5           | A1       | $\sigma$ [H <sub>2</sub> Se a <sub>1</sub> : 4p <sub>x</sub> (Se)]  |
| 18                          | -6.91  | -1312.4                                              | -565.0                                  | -0.3                  | -625.9           | B1       | $4p_{z}(Se)$                                                        |
| 1–18                        |        | -1581.7                                              | -812.9                                  | -1350.6               | -1248.4          |          |                                                                     |
| total                       |        | -1263.8                                              | -498.1                                  | -1031.9               | -931.3           |          |                                                                     |
| Me <sub>2</sub> Se          |        |                                                      |                                         |                       |                  |          |                                                                     |
| $\psi_i \rightarrow \psi_i$ |        | 437.1                                                | 410.1                                   | 328.3                 | 391.8            |          |                                                                     |
| 1–16                        |        | 10.5                                                 | 30.9                                    | 53.8                  | 31.7             |          | inner orbitals                                                      |
| 17–19                       | _[e]   | -17.5                                                | -30.1                                   | -81.5                 | -43.0            | _[f]     | mainly $4s(Se)$ or $\sigma(Me)$                                     |
| 20                          | -11.90 | -4.1                                                 | -8.0                                    | -113.2                | -41.8            | A1       | $\sigma$ [MeSe <sub>2</sub> : 4p <sub>x</sub> (Se)]                 |
| 21                          | -11.88 | -124.7                                               | -79.8                                   | -3.2                  | -69.3            | B1       | $\pi$ [Me <sub>2</sub> Se: 4p <sub>2</sub> (Se)]                    |
| 22                          | -11.48 | -3.1                                                 | -0.0                                    | -240.5                | -81.2            | B2       | $\sigma[Me_2Se: 4p_y(Se)]$                                          |
| 23                          | -11.29 | -3.3                                                 | -1.3                                    | -1.9                  | -2.1             | A2       | $\pi_{z}^{*}$ (Me–Me)                                               |
| 24                          | -9.54  | -405.0                                               | -5.2                                    | 36.7                  | -124.5           | B2       | $\sigma$ [Me <sub>2</sub> Se b <sub>2</sub> : 4p <sub>y</sub> (Se)] |
| 25                          | -8.40  | -8.4                                                 | -405.9                                  | -1530.1               | -648.1           | A1       | $\sigma$ [Me <sub>2</sub> Se a <sub>1</sub> : 4p <sub>x</sub> (Se)] |
| 26                          | -5.84  | -1470.1                                              | -816.8                                  | -0.7                  | -762.5           | B1       | 4p <sub>2</sub> (Se)                                                |
| 1–26                        |        | -2025.7                                              | -1316.2                                 | -1880.5               | -1740.8          |          |                                                                     |
| total                       |        | -1588.6                                              | -906.2                                  | -1552.2               | -1349.0          |          |                                                                     |
| Et <sub>2</sub> Se          |        |                                                      |                                         |                       |                  |          |                                                                     |
| $\psi_i \rightarrow \psi_i$ |        | -11.3                                                | 304.7                                   | 232.9                 | 175.4            |          |                                                                     |
| 1–18                        |        | 19.1                                                 | 26.2                                    | 45.5                  | 30.3             |          | inner orbitals                                                      |
| 19–23                       | _[g]   | 12.2                                                 | -27.6                                   | -69.1                 | -28.3            | _[h]     | mainly $4s(Se)$ or $\sigma(Et)$                                     |
| 24                          | -12.64 | -53.0                                                | -47.7                                   | -1.7                  | -34.1            | B1       | $\pi_{z}[Et_{2}Se: 4p_{z}(Se)]$                                     |
| 25                          | -12.33 | -4.3                                                 | -0.5                                    | -0.2                  | -1.7             | A2       | $\pi_{z}(Et-Et)$                                                    |
| 26                          | -12.12 | -29.6                                                | -0.4                                    | -90.5                 | -40.2            | B2       | $\sigma[Et_2Se: 4p_v(Se)]$                                          |
| 27                          | -11.29 | -5.2                                                 | -1.7                                    | -1.1                  | -2.7             | A1       | $\sigma[Et_2Se: 4s(Se)]$                                            |
| 28                          | -10.79 | -1.6                                                 | -33.8                                   | -250.6                | -95.4            | A1       | $\sigma[Et_2Se: 4p_x(Se)]$                                          |
| 29                          | -10.28 | 6.1                                                  | -0.3                                    | -38.9                 | -11.0            | B2       | $\sigma(C-C)$                                                       |
| 30                          | -10.06 | -91.4                                                | -40.2                                   | -3.0                  | -44.8            | B1       | $\pi_{z} * [Et_{2}Se: 4p_{z}(Se)]$                                  |
| 31                          | -9.75  | -3.1                                                 | -1.0                                    | -4.2                  | -2.8             | A2       | $\pi_{z}^{*}(Et-Et)$                                                |
| 32                          | -8.69  | -182.0                                               | -3.1                                    | -258.2                | -147.8           | B2       | $\sigma(Et_2Se b_2: 4p_y(Se))$                                      |
| 33                          | -8.06  | -4.6                                                 | -300.3                                  | -1314.5               | -539.8           | A1       | $\sigma(Et_2Se a_1: 4p_r(Se))$                                      |
| 34                          | -5.74  | -1537.3                                              | -783.8                                  | -0.6                  | -773.9           | B1       | $4p_{z}(Se)$                                                        |
| 1–34                        |        | -1874.9                                              | -1214.1                                 | -1987.0               | -1692.0          |          | 2 /                                                                 |
| total                       |        | -1886.3                                              | -909.4                                  | -1754.1               | -1516.6          |          |                                                                     |

[a] Optimized with the 6-311+G(3df) basis set for Se and 6-311+G(3d,2p) basis set for other nuclei from Gaussian 03. [b] A utility program of Gaussian 03 (NMRANAL-NH03G) was applied to separate the contributions from each molecular orbital. [c] The contribution from each molecular orbital contains only that from the  $\psi_i \rightarrow \psi_a$  transitions. [d]  $\sigma$ (Se) and the components are given in ppm. [e] -20.95 to -16.30 eV. [f] Symmetries are A1, B2, and A1 for *i*=17-19, respectively. [g] -21.61 to -15.77 eV. [h] Symmetries are A1, B2, A1, B2, and A1 for *i*=19–23, respectively.

Chem. Eur. J. 2007, 13, 5282-5293

© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

 $(\psi_{16}),$ 

to

Origin of the pre- $\alpha$  effect: The pre- $\alpha$  effect is analyzed by employing  $\sigma^{p}(Se)$  and the components of H<sub>2</sub>Se ( $\Delta\sigma^{p}(Se-p\alpha)$ : H<sub>2</sub>Se)= $\sigma^{p}(Se-p\alpha)$ : H<sub>2</sub>Se)= $\sigma^{p}$ -(Se: H<sub>2</sub>Se)/2). As shown in

HOMO-1 ( $\psi_{17}$ ), and HOMO ( $\psi_{18}$ ) of H<sub>2</sub>Se are mainly constructed by 4p<sub>y</sub>(Se), 4p<sub>x</sub>(Se), and 4p<sub>z</sub>(Se), respectively.<sup>[28]</sup> The contributions of  $\psi_{16}$ ,  $\psi_{17}$ , and  $\psi_{18}$  to  $\sigma^{p}$ (Se) are -246, -351, and -626 ppm, respectively. The sum of  $\sigma^{p}$ (Se) over

amounts

-1223 ppm, which is 98% of that summed over  $\psi_1 - \psi_{18}$ (-1248 ppm). The results show that the pre- $\alpha$  effect in H<sub>2</sub>Se substantially originates from the three MOs. The contributions of the  $\psi_i \rightarrow \psi_i$  and  $\psi_i \rightarrow \psi_a$ 

transitions to  $\sigma^{p}(Se: H_2Se)$  are

317 and -1248 ppm, respec-

tively. Therefore,  $\sigma^{p}(\text{Se-p}\alpha)$ :

 $H_2Se)$  of -466 ppm ((317-1248)/2 ppm) must come from

Table 3, HOMO-2

Table 4. Contributions from  $\psi_i \rightarrow \psi_a$  transitions to  $\sigma^{p}(Se)_{xx}$ ,  $\sigma^{p}(Se)_{yy}$ , and  $\sigma^{p}(Se)_{zz}$  in H<sub>2</sub>Se, Me<sub>2</sub>Se, and Et<sub>2</sub>Se, together with the energy differences and characters of  $\psi_a$ .<sup>[a-c]</sup>

| 0                                | 05                               |                                                      | 1 4                                                  |                                                      |                                  |
|----------------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------|
| $\psi_i \rightarrow \psi_a$      | $\Delta \varepsilon [\text{eV}]$ | $\boldsymbol{\sigma}^{\mathrm{p}}(\mathrm{Se})_{xx}$ | $\boldsymbol{\sigma}^{\mathrm{p}}(\mathrm{Se})_{yy}$ | $\boldsymbol{\sigma}^{\mathrm{p}}(\mathrm{Se})_{zz}$ | Character of $\psi_a$            |
| H <sub>2</sub> Se <sup>[d]</sup> |                                  |                                                      |                                                      |                                                      |                                  |
| 16(B2)→24(A1)                    | 13.31                            | 0                                                    | 0                                                    | -164                                                 | $\sigma^*[H_2Se a_1: 4p_x(Se)]$  |
| 17(A1)→20(B2)                    | 9.62                             | 0                                                    | 0                                                    | -581                                                 | $\sigma^*[H_2Se b_2: 4p_v(Se)]$  |
| 17(A1)→32(B2)                    | 18.74                            | 0                                                    | 0                                                    | -150                                                 | $\sigma^*[H_2Se b_2: 5p_v(Se)]$  |
| 18(B1)→19(A1)                    | 6.28                             | 0                                                    | -255                                                 | 0                                                    | $\sigma^*[H_2Se a_1: 4p_x(Se)]$  |
| 18(B1)→20(B2)                    | 6.67                             | -1251                                                | 0                                                    | 0                                                    | $\sigma^*[H_2Se b_2: 4p_v(Se)]$  |
| 18(B1)→24(A1)                    | 8.69                             | 0                                                    | -257                                                 | 0                                                    | $\sigma^*[H_2Se a_1: 4p_x(Se)]$  |
| Me <sub>2</sub> Se               |                                  |                                                      |                                                      |                                                      |                                  |
| 24(B2)→53(B1)                    | 18.38                            | -151                                                 | 0                                                    | 0                                                    | _[e]                             |
| 25(A1)→27(B2)                    | 8.11                             | 0                                                    | 0                                                    | -622                                                 | $\sigma^*[Me_2Se b_2; 4p_v(Se)]$ |
| 25(A1)→32(B2)                    | 9.82                             | 0                                                    | 0                                                    | -323                                                 | $\sigma^*[Me_2Se b_2; 4p_v(Se)]$ |
| 25(A1)→53(B1)                    | 17.24                            | 0                                                    | -159                                                 | 0                                                    | $\sigma^*[Me_2Se a_1; 4p_x(Se)]$ |
| 26(B1)→27(B2)                    | 5.55                             | -1161                                                | 0                                                    | 0                                                    | $\sigma^*[Me_2Se b_2; 4p_v(Se)]$ |
| 26(B1)→28(A1)                    | 5.66                             | 0                                                    | -300                                                 | 0                                                    | _[e]                             |
| 26(B1)→32(B2)                    | 7.26                             | -396                                                 | 0                                                    | 0                                                    | $\sigma^*[Me_2Se b_2; 4p_v(Se)]$ |
| 26(B1)→38(A1)                    | 8.64                             | 0                                                    | -213                                                 | 0                                                    | $\sigma^*[Me_2Se a_1; 4p_v(Se)]$ |
| Et <sub>2</sub> Se               |                                  |                                                      |                                                      |                                                      | 2                                |
| 32(B2)→36(A1)                    | 8.56                             | 0                                                    | 0                                                    | -139                                                 | _[e]                             |
| 33(A1)→35(B2)                    | 7.76                             | 0                                                    | 0                                                    | -315                                                 | $\sigma^*[Et_2Se b_2: 4p_v(Se)]$ |
| 33(A1)→38(B2)                    | 8.83                             | 0                                                    | 0                                                    | -313                                                 | $\sigma^*[Et_2Se b_2: 4p_v(Se)]$ |
| 34(B1)→35(B2)                    | 5.43                             | -875                                                 | 0                                                    | 0                                                    | $\sigma^*[Et_2Se b_2: 4p_v(Se)]$ |
| 34(B1)→36(A1)                    | 5.61                             | 0                                                    | -179                                                 | 0                                                    | _[e]                             |
| 34(B1)→38(B2)                    | 6.50                             | -530                                                 | 0                                                    | 0                                                    | $\sigma^*[Et_2Se b_2: 4p_y(Se)]$ |
| 34(B1)→42(A1)                    | 7.06                             | 0                                                    | -302                                                 | 0                                                    | _[e]                             |
|                                  |                                  |                                                      |                                                      |                                                      |                                  |

[a] A utility program of Gaussian03 (NMRANAL-NH03G) was applied, similarly to the cases in Table 3. [b] Values for  $\sigma^{p}(Se)_{xx}$ ,  $\sigma^{p}(Se)_{yy}$ , and  $\sigma^{p}(Se)_{zz}$  are given in ppm. [c] Contributions larger than 120 ppm to  $|\sigma^{p}(Se)_{xx} + \sigma^{p}(Se)_{yy} + \sigma^{p}(Se)_{zz}|$  are shown. [d] Contributions from 16(B2) $\rightarrow$ 23(B1) and 17(A1) $\rightarrow$ 23(B1) are -59( $=\sigma^{p}(Se)_{xx}$ ) and -52 ppm ( $=\sigma^{p}(Se)_{yy}$ ), respectively, where  $\psi_{23}$  could be called  $5p_{z}(Se)$ . [e] Difficult to specify.

tively, separately for the  $\psi_i \rightarrow \psi_j$ <sup>[27]</sup>  $\psi_i \rightarrow \psi_a$ , and  $\psi_i \rightarrow \psi_{j+a}$  transitions for various selenides. In Tables 5 and 6 the contributions to  $\sigma^{p}(Se)$  from the *trans* ( $C_s$ ) and *gauche* (g) conformers of propyl derivatives are given separately. The mechanisms of the pre- $\alpha$ ,  $\alpha$ ,  $\beta$ , and  $\gamma$  effects are elucidated on the basis of MO theory.

the  $\psi_i \rightarrow \psi_a$  transitions, especially from  $\psi_i$  of  $\psi_{16}$ ,  $\psi_{17}$ , and  $\psi_{18}$ .

 $\psi_{16} - \psi_{18}$ 

Figure 1 depicts the  $\psi_i \rightarrow \psi_a$  transitions in H<sub>2</sub>Se, which are listed in Table 4. It explains well how the pre- $\alpha$  effect originates from the transitions under the control of the angular momentum operator. Since Se<sup>2-</sup> was chosen as the standard,  $\sigma^{p}$ (Se-p $\alpha$ : H<sub>2</sub>Se) is explained by the generation of double  $\sigma$ -

Table 5. Contributions from the  $\psi_i \rightarrow \psi_j$ ,  $\psi_i \rightarrow \psi_a$ , and  $\psi_i \rightarrow \psi_{j+a}$  transitions to  $\sigma^{p}(Se)$  and the  $\beta$  effect.<sup>[a-c]</sup>

|                                  | $\psi_i \rightarrow \psi_i$ |                                      | $\psi_i$         | $\psi_i \rightarrow \psi_a$          |                  | $\rightarrow \psi_{i+a}$             | T                | Total <sup>[d]</sup>                 |  |
|----------------------------------|-----------------------------|--------------------------------------|------------------|--------------------------------------|------------------|--------------------------------------|------------------|--------------------------------------|--|
| Compound                         | $\sigma^{p}(Se)$            | $\Delta \sigma^{p}(\text{Se-}\beta)$ | $\sigma^{p}(Se)$ | $\Delta \sigma^{p}(\text{Se-}\beta)$ | $\sigma^{p}(Se)$ | $\Delta \sigma^{p}(\text{Se-}\beta)$ | $\sigma^{t}(Se)$ | $\Delta \sigma^{t}(\text{Se-}\beta)$ |  |
| $MeSe^{-}(C_{3v})$               | 395.2                       | 0.0                                  | -1531.0          | 0.0                                  | -1135.8          | 0.0                                  | 1865.1           | 0.0                                  |  |
| $EtSe^{-}(C_s)$                  | 181.3                       | -213.9                               | -1524.7          | 6.3                                  | -1343.3          | -207.5                               | 1661.0           | -204.1                               |  |
| $i PrSe^{-}(C_s)$                | -396.2                      | -395.7                               | -1088.9          | 221.1                                | -1485.1          | -174.7                               | 1524.6           | -170.3                               |  |
| $t \operatorname{BuSe}^{-}(C_s)$ | -623.2                      | -339.5                               | -963.5           | 189.2                                | -1586.7          | -150.3                               | 1429.5           | -145.2                               |  |
| MeSeH $(C_s)$                    | 357.6                       | 0.0                                  | -1512.6          | 0.0                                  | -1155.0          | 0.0                                  | 1843.2           | 0.0                                  |  |
| EtSeH $(C_s)$                    | 299.9                       | -57.7                                | -1534.8          | -22.2                                | -1235.0          | -80.0                                | 1765.1           | -78.1                                |  |
| $i$ PrSeH ( $C_s$ )              | 195.9                       | -80.9                                | -1665.6          | -76.5                                | -1469.7          | -157.4                               | 1534.8           | -154.2                               |  |
| $i$ PrSeH ( $C_1$ : $g$ )        | 209.3                       | -74.2                                | -1620.7          | -54.1                                | -1411.4          | -128.2                               | 1592.6           | -125.3                               |  |
| $t$ BuSeH ( $C_s$ )              | 30.1                        | -109.2                               | -1583.6          | -23.7                                | -1553.5          | -132.8                               | 1455.8           | -129.1                               |  |
| MeSeMe $(C_{2\nu})$              | 391.8                       | 0.0                                  | -1740.8          | 0.0                                  | -1349.0          | 0.0                                  | 1650.1           | 0.0                                  |  |
| MeSeEt $(C_s)$                   | 319.7                       | -72.1                                | -1742.2          | -1.4                                 | -1422.5          | -73.5                                | 1579.4           | -70.7                                |  |
| MeSeEt $(C_1: g)$                | 317.6                       | -74.2                                | 1796.6           | -55.8                                | -1479.0          | -130.0                               | 1523.0           | -127.1                               |  |
| MeSeiPr $(C_1: g)$               | 213.9                       | -89.0                                | -1765.9          | -25.1                                | -1552.0          | -101.5                               | 1454.3           | -97.9                                |  |
| MeSetBu $(C_s)$                  | 84.7                        | -102.4                               | -1736.2          | 4.6                                  | -1651.5          | -100.8                               | 1360.0           | -96.7                                |  |
| EtSeEt $(C_{2\nu})$              | 175.4                       | -108.2                               | -1692.0          | 24.4                                 | -1516.6          | -83.8                                | 1489.6           | -80.3                                |  |
| EtSeEt $(C_2)$                   | 268.9                       | -61.5                                | -1882.7          | -71.0                                | -1613.8          | -132.4                               | 1390.3           | -129.9                               |  |
| $i \Pr_2 Se(C_2)$                | -38.3                       | -107.5                               | -1738.8          | 0.5                                  | -1777.1          | -107.0                               | 1238.2           | -103.0                               |  |
| $tBu_2Se(C_2)$                   | -277.7                      | -115.6                               | -1693.0          | 8.0                                  | -1970.7          | -103.6                               | 1056.4           | -99.0                                |  |

[a] Calculated with the 6-311+G(3df) basis set for Se and the 6-311+G(3d,2p) basis set for other nuclei of Gaussian03 by using the GIAO-DFT method. [b] In ppm. [c] Given for a methyl group. [d]  $\sigma'(Se) = \sigma^{p}(Se) + \sigma^{d}(Se)$ .

| 5 | 0 | Q | 6 |
|---|---|---|---|
| J | 4 | 0 | υ |

| Table 6. | Contributions | from the | $\psi_i \rightarrow \psi_i, \psi_i$ | $\psi_i \rightarrow \psi_a$ , and | $\psi_i \rightarrow \psi_{i+a}$ | transitions | to $\sigma^{p}(Se)$ | and the $\gamma$ | effect.[a-c] |
|----------|---------------|----------|-------------------------------------|-----------------------------------|---------------------------------|-------------|---------------------|------------------|--------------|
|----------|---------------|----------|-------------------------------------|-----------------------------------|---------------------------------|-------------|---------------------|------------------|--------------|

|                                                         | ψ                | $\psi_i \rightarrow \psi_j$              |                  | $\psi_i \rightarrow \psi_a$           |                  | $\rightarrow \psi_{j+a}$              | Total <sup>[d]</sup> |                                       |
|---------------------------------------------------------|------------------|------------------------------------------|------------------|---------------------------------------|------------------|---------------------------------------|----------------------|---------------------------------------|
| Compound                                                | $\sigma^{p}(Se)$ | $\Delta \sigma^{\rm p}({\rm Se-}\gamma)$ | $\sigma^{p}(Se)$ | $\Delta \sigma^{p}(\text{Se-}\gamma)$ | $\sigma^{p}(Se)$ | $\Delta \sigma^{p}(\text{Se-}\gamma)$ | $\sigma^{t}(Se)$     | $\Delta \sigma^{t}(\text{Se-}\gamma)$ |
| $EtSe^{-}(C_s)$                                         | 181.3            | 0.0                                      | -1524.7          | 0.0                                   | -1343.3          | 0.0                                   | 1661.0               | 0.0                                   |
| $n \Pr Se^{-}(C_s)$                                     | 248.9            | 67.6                                     | -1546.7          | -22.0                                 | -1297.8          | 45.5                                  | 1706.2               | 45.2                                  |
| $n \operatorname{PrSe}^{-}(C_1; g)$                     | 282.3            | 101.0                                    | -1514.8          | 9.9                                   | -1232.5          | 110.8                                 | 1771.4               | 110.4                                 |
| EtSeH $(C_s)$                                           | 299.9            | 0.0                                      | -1534.8          | 0.0                                   | -1235.0          | 0.0                                   | 1765.1               | 0.0                                   |
| $n PrSeH(C_s)$                                          | 257.2            | -42.7                                    | -1478.0          | 56.8                                  | -1220.8          | 14.2                                  | 1780.5               | 15.4                                  |
| $n$ PrSeH ( $C_1$ : $g$ )                               | 293.4            | -6.5                                     | -1507.4          | 27.4                                  | -1214.0          | 21.0                                  | 1786.4               | 21.3                                  |
| EtSeMe $(C_s)$                                          | 319.7            | 0.0                                      | -1742.2          | 0.0                                   | -1422.4          | 0.0                                   | 1579.4               | 0.0                                   |
| $n$ PrSeMe ( $C_s$ )                                    | 298.5            | -21.2                                    | -1706.7          | 35.5                                  | -1408.2          | 14.2                                  | 1594.9               | 15.2                                  |
| <i>n</i> PrSeMe ( $C_1$ : $g$ )                         | 352.1            | 32.4                                     | -1746.5          | -4.3                                  | -1394.4          | 28.0                                  | 1607.9               | 28.5                                  |
| $n$ PrSeMe ( $C_1$ : $gg$ )                             | 332.8            | 13.1                                     | -1724.8          | 17.4                                  | -1392.0          | 30.4                                  | 1610.4               | 31.0                                  |
| $Et_2Se(C_{2\nu})$                                      | 175.4            | 0.0                                      | -1692.0          | 0.0                                   | -1516.6          | 0.0                                   | 1489.6               | 0.0                                   |
| $n \Pr_2 Se(C_{2\nu})$                                  | 172.9            | -1.3                                     | -1662.2          | 14.9                                  | -1489.3          | 13.7                                  | 1519.7               | 15.1                                  |
| $n \Pr_2 Se (C_2: gg)$                                  | 291.6            | 58.1                                     | -1754.0          | -31.0                                 | -1462.4          | 27.1                                  | 1543.7               | 27.1                                  |
| $n \operatorname{BuSe}^{-}(C_s)^{[e]}$                  | 209.5            | -39.4                                    | -1496.0          | 50.7                                  | -1286.5          | 11.3                                  | 1718.0               | 11.8                                  |
| $n$ BuSeH $(C_s)^{[e]}$                                 | 234.3            | -22.9                                    | -1454.4          | 23.6                                  | -1220.1          | 0.7                                   | 1781.8               | 1.3                                   |
| $n\mathrm{Bu}_{2}\mathrm{Se} (C_{2\nu})^{[\mathrm{e}]}$ | 186.7            | 6.9                                      | -1678.9          | -8.4                                  | -1492.2          | -1.5                                  | 1519.8               | 0.1                                   |

[a] Calculated with the 6-311+G(3df) basis set for Se and the 6-311+G(3d,2p) basis set for other nuclei of Gaussian03 by using the GIAO-DFT method. [b] In ppm. [c] Given for a methyl group. [d]  $\sigma^{t}(Se) = \sigma^{p}(Se) + \sigma^{d}(Se)$ . [e] Evaluated for  $\Delta\sigma(Se-\delta)$ .



Figure 1. Contributions from each  $\psi_i \rightarrow \psi_a$  transition to the components of  $\sigma^p(Se)$  in H<sub>2</sub>Se.  $\psi_{16}$  and  $\psi_{23}$  are depicted for convenience of discussion, although their contributions are small.  $\psi_{18}$  and  $\psi_{23}$  are drawn from another direction.

(Se–H) and  $\sigma^*$ (Se–H) through protonation at the spherical Se<sup>2-</sup> ion. The four orbitals practically act as  $\sigma(H_2Se: a_1)$ ,  $\sigma(H_2Se: b_2)$ ,  $\sigma^*(H_2Se: a_1)$ , and  $\sigma^*(H_2Se: b_2)$ . They lead to effective  $\psi_i \rightarrow \psi_a$  transitions, together with  $n_p(Se)$  of  $4p_z(Se)$ , from which the pre- $\alpha$  effect in  $H_2Se$  mainly arises.

**α effect**: The analysis of the α effect is exemplified for Me<sub>2</sub>Se by employing **σ**<sup>p</sup>(Se) and the components listed in Table 3 (Δ**σ**<sup>p</sup>(Se-α: Me<sub>2</sub>Se) = [**σ**<sup>p</sup>(Se: Me<sub>2</sub>Se) – **σ**<sup>p</sup>(Se: H<sub>2</sub>Se)]/ 2). Since atomic 4p<sub>x</sub>(Se), 4p<sub>y</sub>(Se), and 4p<sub>z</sub>(Se) orbitals interact with the local orbitals of the two Me groups in Me<sub>2</sub>Se, the 4p(Se) character spreads over the whole molecule. The interactions result in the formation of HOMO-2 (ψ<sub>24</sub>), HOMO-1 (ψ<sub>25</sub>), and HOMO (ψ<sub>26</sub>), which are mainly constructed by 4p<sub>y</sub>(Se), 4p<sub>x</sub>(Se), and 4p<sub>z</sub>(Se), respectively, together with ψ<sub>20</sub>, ψ<sub>21</sub>, and ψ<sub>22</sub> with smaller contributions of  $4p_x(Se)$ ,  $4p_z(Se)$ , and  $4p_y(Se)$ , respectively.<sup>[29]</sup> The 4p(Se) character is also distributed to the unoccupied MOs, to a greater or lesser extent. Consequently, many  $\psi_i \rightarrow \psi_a$  transitions contribute to  $\sigma^p(Se: Me_2Se)$ .

The sums of  $\sigma^{p}(\text{Se: Me}_{2}\text{Se})$  over  $\psi_{24}-\psi_{26}$  and  $\psi_{20}-\psi_{22}$  are -1535 and -192 ppm, respectively, which are 88 and 11% of the sum over  $\psi_{1}-\psi_{26}$  (-1741 ppm). On the other hand, the contribution from the  $\psi_{i}\rightarrow\psi_{j}$  transitions to  $\sigma^{p}(\text{Se: Me}_{2}\text{Se})$  is 392 ppm, which is larger than  $\sigma^{p}(\text{Se: H}_{2}\text{Se})$  by 75 ppm. Therefore, the  $\psi_{i}\rightarrow\psi_{a}$  transitions must contribute to  $\Delta\sigma^{p}(\text{Se-}\alpha: \text{Me}_{2}\text{Se})$ . Figure 2 depicts the main  $\psi_{i}\rightarrow\psi_{a}$  transitions, contributing to  $\sigma^{p}(\text{Se})_{xx}$ ,  $\sigma^{p}(\text{Se})_{yy}$ , and  $\sigma^{p}(\text{Se})_{zz}$  in Me<sub>2</sub>Se (see also Table 4). It explains how the  $\alpha$  effect in Me<sub>2</sub>Se originates from the transitions.



Figure 2. Contributions from each  $\psi_i \rightarrow \psi_a$  transition to the components of  $\sigma^p(Se)$  in Me<sub>2</sub>Se.  $\psi_{24}$  and  $\psi_{30}$  are depicted for convenience of discussion, although their contributions are small.  $\psi_{26}$  and  $\psi_{30}$  are drawn from another direction.

The  $\alpha$  effect is the downfield shift caused by the replacement of Se–H by Se–Me. This replacement makes the electronic distribution around Se more unsymmetrical by changing the nature of the bond from 4p(Se)–1s(H) to 4p(Se)–2p(C), which must result in the larger downfield shift for Me<sub>2</sub>Se relative to H<sub>2</sub>Se. The replacement also affects the orbital energies. The increased values of the reciprocal orbital energy gaps ( $\varepsilon_a - \varepsilon_i$ )<sup>-1</sup> in Me<sub>2</sub>Se relative to H<sub>2</sub>Se must contribute to the downfield shift of Me<sub>2</sub>Se.<sup>[30]</sup>

**\beta effect**: The  $\beta$  effect is predicted to be -84 ppm for Et<sub>2</sub>Se  $(\Delta \sigma^{p}(\text{Se-}\beta: \text{Et}_{2}\text{Se}) = [\sigma^{p}(\text{Se:} \text{Et}_{2}\text{Se}) - \sigma^{p}(\text{Se:} \text{Me}_{2}\text{Se})]/2)$ (Table 5). It is more difficult to understand the  $\beta$  effect intuitively on the basis of MO theory than is the case for the pre- $\alpha$  and  $\alpha$  effects. The  $\psi_i \rightarrow \psi_a$  transitions do not contribute to the  $\beta$  effect in Et<sub>2</sub>Se, since the contributions to  $\sigma^{p}(Se$ : Et<sub>2</sub>Se) and  $\sigma^{p}(Se: Me_2Se)$  from the  $\psi_i \rightarrow \psi_a$  transitions are -1692 and -1741 ppm, respectively (Table 5).  $\sigma^{P}(Se: Et_2Se)$ is larger than  $\sigma^{p}(Se: Me_2Se)$  by 49 ppm, which is exactly the opposite trend to the  $\beta$  effect if the  $\psi_i \rightarrow \psi_a$  transitions are considered. Instead, the contributions from the  $\psi_i \rightarrow \psi_i$  transitions to  $\sigma^{p}(Se: Et_2Se)$  and  $\sigma^{p}(Se: Me_2Se)$  are 175 and 392 ppm, respectively. The former is smaller than the latter by 217 ppm, and this contributes to the  $\beta$  effect of -109 ppm, although they are both positive, that is, the  $\beta$ effect in Et<sub>2</sub>Se is controlled by the  $\psi_i \rightarrow \psi_i$  transitions. The positive value of  $\sigma^{p}(Se: Me_{2}Se)$  becomes smaller on substitution of the methyl proton(s) in Me<sub>2</sub>Se by the Me group(s).

Is the  $\beta$  effect in usual selenides really controlled by the  $\psi_i \rightarrow \psi_j$  transitions? As shown in Table 5, the  $\psi_i \rightarrow \psi_j$  and  $\psi_i \rightarrow \psi_a$  transitions contribute to the  $\beta$  effect by -116 to -58 ppm and -77 to 24 ppm, respectively, on the  $\sigma^p$  scale, for the nonionic species. The  $\psi_i \rightarrow \psi_{j+a}$  transitions contribute -157 to -74 ppm, although the values depend on the structures. The main factor controlling the  $\beta$  effect is demonstrated to be the  $\psi_i \rightarrow \psi_j$  transitions. The dependence of the  $\beta$  effect on conformation is also elucidated. The  $\beta$  effect is larger for *i*PrSeH of  $C_s$  symmetry [*i*PrSeH ( $C_s$ )] (-157 ppm) than that for EtSeH ( $C_s$ ) (-80 ppm), which implies that the effect is much larger for the Me (g) group. The additivity rule seems to hold in the  $\beta$  effect. The value for *t*BuSeH (-133 ppm) is very close to the weighted average between EtSeH and *i*PrSeH (-131 ppm).

What happens when H of Me<sub>2</sub>Se is replaced by Me? Figure 3 shows  $\psi_{32}-\psi_{34}$  in Et<sub>2</sub>Se ( $C_{2\nu}$ ). While  $\psi_{34}$  is mainly localized on the CH<sub>2</sub>SeCH<sub>2</sub> framework of Et<sub>2</sub>Se,  $\psi_{33}$  and  $\psi_{32}$  extend over the whole molecule of Et<sub>2</sub>Se, with  $\psi_{32}$  delocalized more completely (Table 3).

What orbitals and transitions control the  $\beta$  effect? Their analysis is exemplified by Et<sub>2</sub>Se ( $C_{2\nu}$ ). The characters of  $\psi_{32}$ (HOMO-2),  $\psi_{33}$  (HOMO-1), and  $\psi_{34}$  (HOMO) in Et<sub>2</sub>Se ( $C_{2\nu}$ ) are  $\sigma$ [b<sub>2</sub>: 4p<sub>y</sub>(Se)],  $\sigma$ [a<sub>1</sub>: 4p<sub>x</sub>(Se)], and n<sub>p</sub>[4p<sub>z</sub>(Se)], respectively. Table 7 lists the contributions to  $\sigma^{p}$ (Se)<sub>xx</sub>,  $\sigma^{p}$ (Se)<sub>yy</sub>, and  $\sigma^{p}$ (Se)<sub>zz</sub> from the  $\psi_i \rightarrow \psi_j$  transitions for  $\psi_i$  of HOMO, HOMO-1, and HOMO-2 and  $\psi_j$  of HOMO, HOMO-1, and HOMO-2, together with some important orbitals, in Me<sub>2</sub>Se and Et<sub>2</sub>Se. The contribution to the downfield shifts in



Figure 3.  $\psi_{32}$  (HOMO-2) of  $\sigma[b_2: 4p_y(Se)]$ ,  $\psi_{33}$  (HOMO-1) of  $\sigma[a_1: 4p_x(Se)]$ , and  $\psi_{34}$  (HOMO) of  $n_p[4p_z(Se)]$  in Et<sub>2</sub>Se of  $C_{2\nu}$  symmetry.  $\psi_{34}$  is drawn from another direction.

Table 7. Contributions to  $\sigma^{p}(Se)_{xx} + \sigma^{p}(Se)_{yy} + \sigma^{p}(Se)_{zz}$  from some  $\psi_{i} \rightarrow \psi_{j}$  transitions in Me<sub>2</sub>Se and Et<sub>2</sub>Se<sup>[a,b]</sup>

| ψ <sub>i</sub>           | $\psi_j =$ | $\psi_{20}$ | $\psi_{21}$ | $\psi_{22}$ | $\psi_{24}$ | $\psi_{25}$ | $\psi_{26}$ | Sub-          | $\Delta^{[c]}$ |
|--------------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|----------------|
|                          |            |             |             |             |             |             |             | total         |                |
| $Me_2Se(C_{2\nu})$       |            |             |             |             |             |             |             |               |                |
| ψ <sub>26</sub> (HOMO)   |            | 2           | 0           | -5          | -33         | -33         | 0           | -69           | 0              |
| ψ <sub>25</sub> (HOMO-1) |            | 0           | -16         | 183         | 856         | 0           | 721         | 1744          | 0              |
| ψ <sub>24</sub> (HOMO-2) |            | 0           | -74         | 0           | 0           | -38         | 730         | 618           | 0              |
| $\psi_i$                 | $\psi_j =$ | $\psi_{26}$ | $\psi_{28}$ | $\psi_{30}$ | $\psi_{32}$ | $\psi_{33}$ | $\psi_{34}$ | Sub-<br>total | $\Delta^{[c]}$ |
| $Et_2Se(C_{2v})$         |            |             |             |             |             |             |             |               |                |
| ψ <sub>34</sub> (HOMO)   |            | -19         | -3          | 0           | $^{-4}$     | -24         | 0           | -50           | 19             |
| ψ <sub>33</sub> (HOMO-1) |            | 695         | 0           | -58         | 370         | 0           | 521         | 1528          | -216           |
| ψ <sub>32</sub> (HOMO-2) |            | 0           | 2           | -57         | 0           | -16         | 84          | 13            | -605           |

[a] By applying the utility program NMRANAL-NH98G. [b] In ppm. [c]  $\sigma^{p}(\text{Se: } R_2\text{Se})-\sigma^{p}(\text{Se: } Me_2\text{Se})$  for HOMO, HOMO–1, and HOMO–2, where R=Me or Et.

Et<sub>2</sub>Se relative to Me<sub>2</sub>Se is largest in HOMO–2. The difference of -605 ppm corresponds to the  $\beta$  effect of -101 ppm [-605/(3×2)]. The most important transition in the  $\beta$  effect is that from HOMO–2 to HOMO. The  $\psi_{24}$  (HOMO–2) $\rightarrow$   $\psi_{26}$  (HOMO) transition contributes to the components of  $\sigma^{p}$ (Se) by 730 ppm in Me<sub>2</sub>Se, whereas the corresponding  $\psi_{32}$  (HOMO–2) $\rightarrow$  $\psi_{34}$ (HOMO) transition does so by 84 ppm in Et<sub>2</sub>Se. The difference is -646 ppm, which generates the  $\beta$  effect of -108 ppm (-646/(3×2) ppm). The extension of  $\psi_{32}$  [b<sub>2</sub>: 4p<sub>y</sub>(Se)] in Et<sub>2</sub>Se over the whole molecule would be responsible for the smaller upfield shift in the transition to the HOMO (see Figure 3).

 $\gamma$  effect: Upfield shifts of 14 and 27 ppm are predicted from the  $\psi_i \rightarrow \psi_{j+a}$  transitions for  $n \Pr_2 \text{Se}(C_{2\nu})$  and  $n \Pr_2 \text{Se}(C_2$ : gg), respectively, relative to Et<sub>2</sub>Se  $(C_{2\nu})$  (Table 6), which correspond to the  $\gamma$  effect  $(\Delta \sigma^p(\text{Se-}\gamma): n \Pr_2 \text{Se}) = [\sigma^p(\text{Se}: n \Pr_2 \text{Se}) - \sigma^p(\text{Se}: \text{Et}_2 \text{Se})]/2$ ). Although the upfield nature of  $\Delta \sigma^p(\text{Se-}\gamma)$  is suggested in both  $C_s$  (trans) and g conformers in  $n \Pr_2 \text{Se}$ , the mechanism seems complex. The  $\psi_i \rightarrow \psi_a$  transition mainly contributes to the  $\gamma$  effect in  $n \Pr_2 \text{Se}(C_{2\nu})$ , whereas the  $\psi_i \rightarrow \psi_j$  transition is responsible in  $n \Pr_2 \text{Se}(C_2:$ gg). A similar trend is observed in  $n \Pr_2 \text{Se}$ . These results

imply that the  $\psi_i \rightarrow \psi_a$  and  $\psi_i \rightarrow \psi_j$  transitions mainly contribute to  $\Delta \sigma^{p}(\text{Se-}\gamma)$  in *n*PrSeR (*C<sub>s</sub>*) and *n*PrSeR (*g*), respectively.

The relation between the contributions of  $\psi_i \rightarrow \psi_a$  and  $\psi_i \rightarrow \psi_i$  transitions was examined. Figure 4 shows a plot of



Figure 4. Plots of  $\Delta \sigma^{p}(\text{Se-}\gamma: \psi_{i} \rightarrow \psi_{j})$  versus  $\Delta \sigma^{p}(\text{Se-}\gamma: \psi_{i} \rightarrow \psi_{a})$  for *n*PrSeR (R = H, Me, and *n*Pr) and *n*PrSe<sup>-</sup>, in various conformers.

the contributions to  $\Delta \sigma^{p}(\text{Se-}\gamma)$  from the  $\psi_{i} \rightarrow \psi_{j}$  transitions  $[\Delta \sigma^{p}(\text{Se-}\gamma: \psi_{i} \rightarrow \psi_{j})]$  versus  $\Delta \sigma^{p}(\text{Se-}\gamma: \psi_{i} \rightarrow \psi_{a})$  for *n*PrSeR (R=H, Me, and *n*Pr). Equation (8) gives the correlation, which is fairly good (*r*=0.986). The *y* intercept of the correlation (*b* in *y*=*ax*+*b*) is 24 ppm, which corresponds to the  $\gamma$  effect of the upfield shift for negligibly small  $\Delta \sigma^{p}(\text{Se-}\gamma: \psi_{i} \rightarrow \psi_{a})$ . The correlation constant of *a*=-1.17 is close to minus

one. The results show that  $\Delta \sigma^{p}(\text{Se-}\gamma: \psi_{i} \rightarrow \psi_{j})$  and  $\Delta \sigma^{p}(\text{Se-}\gamma: \psi_{i} \rightarrow \psi_{a})$  will mostly cancel out, even if  $\Delta \sigma^{p}(\text{Se-}\gamma: \psi_{i} \rightarrow \psi_{a})$  is not negligible. In this case, the  $\gamma$  effect will be more and less upfield than 24 ppm for  $\Delta \sigma^{p}(\text{Se-}\gamma: \psi_{i} \rightarrow \psi_{a}) < 0$  and  $\Delta \sigma^{p}(\text{Se-}\gamma: \psi_{i} \rightarrow \psi_{a}) > 0$ , respectively. Such subtle balance between the contributions from the  $\psi_{i} \rightarrow \psi_{j}$  and  $\psi_{i} \rightarrow \psi_{a}$  transitions explains the small upfield shifts of the  $\gamma$  effect.<sup>[31]</sup>

$$\Delta \sigma^{\mathrm{p}}(\mathrm{Se-\gamma}: \ \psi_i \to \psi_j) = -1.17 \,\Delta \sigma^{\mathrm{p}}(\mathrm{Se-\gamma}: \ \psi_i \to \psi_a)$$
  
+24.1 (n = 7, r = 0.986) (8)

The  $\delta$  effect is negligibly small for *n*BuSeH and *n*Bu<sub>2</sub>Se (Table 6). However, the contributions from the  $\psi_i \rightarrow \psi_j$  and  $\psi_i \rightarrow \psi_a$  transitions in *n*BuSeH ( $C_s$ ) are -23 and 24 ppm relative to those in *n*PrSeH ( $C_s$ ), respectively. The subtle balance between the two transitions also makes the effect very small.

The effect of  $p(Se)-\pi(C=C)$  conjugation is also important in  $\delta(Se)$ . The effect caused by ethenyl and phenyl groups was analyzed, together with the mechanism, in relation to the orientational effect.

Effect of  $p(Se)-\pi(C=C)$  conjugation: The replacement of Se-H by Se-CH=CH<sub>2</sub> induces  $p(Se)-\pi(C=C)$  conjugation, which causes a large downfield shift in  $\delta(Se)$ . The effect amounts to 300–500 ppm in ethenyl and phenyl selenides.<sup>[9]</sup> It is analyzed here for the examples of CH<sub>2</sub>=CHSeR and PhSeR (R=H and Me).<sup>[22]</sup> Three conformers are considered for each of CH<sub>2</sub>=CHSeR (R=H and Me), CH<sub>2</sub>=CHSeR (**pl**-A), CH<sub>2</sub>=CHSeR (**pl**-B), and CH<sub>2</sub>=CHSeR (**pd**).<sup>[32]</sup> The **pl**-A conformer is predicted to be the global minimum for each.<sup>[33,34]</sup> Table 8 shows the effect of  $p(Se)-\pi(C=C)$  conjugation [ $\Delta \sigma(Se-\pi)$ ] in ethenyl and phenyl selenides.

Table 8. Effect of  $p(Se)-\pi(C=C)$  conjugation, calculated and observed in ethenyl and phenyl selenides.<sup>[a-c]</sup>

| Compound                                                    | $\sigma^{p}(Se)$ | $\Delta \sigma^{p}(\text{Se-}\pi)$ | $\sigma^{t}(Se)$ | $\Delta \sigma^{t}(\text{Se-}\pi)$ | $\boldsymbol{\sigma}^{t}(Se)^{[d]}$ | $\Delta \sigma^{t} (Se-\pi)^{[d]}$ | $\delta(Se)^{[e]}$ | $\Delta \delta (\text{Se-}\pi)^{[e]}$ |
|-------------------------------------------------------------|------------------|------------------------------------|------------------|------------------------------------|-------------------------------------|------------------------------------|--------------------|---------------------------------------|
| Ethenyl effect                                              |                  |                                    |                  |                                    |                                     |                                    |                    |                                       |
| HSeH                                                        | -931.3           | 0.0                                | 2066.7           | 0.0                                | 2252.7                              | 0.0                                | -331.7             | 0.0                                   |
| CH <sub>2</sub> =CHSeH (pl-A)                               | -1426.7          | -495.4                             | 1574.3           | -492.4                             | 1824.3                              | -428.4                             |                    |                                       |
| CH <sub>2</sub> =CHSeH (pl-B)                               | -1378.5          | -447.2                             | 1621.4           | -445.3                             | 1869.0                              | -383.7                             |                    |                                       |
| CH <sub>2</sub> =CHSeH (pd)                                 | -1315.7          | -384.4                             | 1685.1           | -381.6                             | 1917.8                              | -334.9                             |                    |                                       |
| $\Delta(\mathbf{pl}-\mathbf{A}-\mathbf{pd})^{[\mathrm{f}]}$ |                  | -111.0                             |                  | -110.6                             |                                     | -93.5                              |                    |                                       |
| $\Delta(\mathbf{pl}-\mathbf{B}-\mathbf{pd})^{[f]}$          |                  | -62.8                              |                  | -63.7                              |                                     | -48.8                              |                    |                                       |
| HSeMe                                                       | -1155.0          | 0.0                                | 1843.2           | 0.0                                | 2072.7                              | 0.0                                | -141.6             | 0.0                                   |
| CH <sub>2</sub> =CHSeMe (pl-A)                              | -1524.8          | -369.8                             | 1476.8           | -366.4                             | 1738.9                              | -333.8                             | 186 <sup>[g]</sup> | 328 <sup>[g]</sup>                    |
| CH <sub>2</sub> =CHSeMe (pl-B)                              | -1525.3          | -370.3                             | 1476.7           | -366.5                             | 1744.6                              | -328.1                             |                    |                                       |
| CH <sub>2</sub> =CHSeMe ( <b>pd</b> )                       | -497.7           | -342.7                             | 1504.6           | -338.6                             | 1759.4                              | -313.3                             |                    |                                       |
| $\Delta(\mathbf{pd}-\mathbf{pl}-\mathbf{A})^{[\mathbf{f}]}$ |                  | -27.1                              |                  | -27.8                              |                                     | -20.5                              |                    |                                       |
| $\Delta(\mathbf{pd}-\mathbf{pl}-\mathbf{B})^{[f]}$          |                  | -27.6                              |                  | -27.9                              |                                     | -14.8                              |                    |                                       |
| Phenyl effect                                               |                  |                                    |                  |                                    |                                     |                                    |                    |                                       |
| HSeH                                                        | -931.3           | 0.0                                | 2066.7           | 0.0                                | 2251.3 <sup>[h]</sup>               | 0.0                                | -331.7             | 0.0                                   |
| PhSeH (pl)                                                  | -1436.1          | -504.8                             | 1563.4           | -503.3                             | 1801.5 <sup>[h]</sup>               | 449.8                              | 145                | 476.7                                 |
| PhSeH (pd)                                                  | -1392.8          | -461.5                             | 1609.1           | -457.6                             | 1830.5 <sup>[h]</sup>               | 420.8                              |                    |                                       |
| $\Delta(\mathbf{pl}-\mathbf{pd})^{[f]}$                     |                  | -43.3                              |                  | -45.7                              |                                     | -29.0                              |                    |                                       |
| HSeMe                                                       | -1155.0          | 0.0                                | 1843.2           | 0.0                                | 2067.3 <sup>[h]</sup>               | 0.0                                | -141.6             | 0.0                                   |
| PhSeMe (pl)                                                 | -1525.8          | -370.9                             | 1480.7           | -362.5                             | 1727.5 <sup>[h]</sup>               | -339.8                             | 202                | 343.6                                 |
| PhSeMe (pd)                                                 | -1566.7          | -411.7                             | 1431.3           | -411.9                             | 1668.7 <sup>[h]</sup>               | -398.6                             |                    |                                       |
| $\Delta(\mathbf{pl}-\mathbf{pd})^{[f]}$                     |                  | 40.9                               |                  | 49.4                               |                                     | 58.8                               |                    |                                       |

[a] Calculated with the 6-311+G(3df) basis set for Se and the 6-311+G(3d,2p) basis set for other nuclei of Gaussian 03. [b] In ppm. [c] By the GIAO-DFT method. [d] By the GIAO-MP2 method. [e] Observed values. [f] Corresponding to  $\Delta \sigma$ (Se-or). [g] Observed for *cis*-PhCH=CHSeMe. [h] Ref. [3d].

Chem. Eur. J. 2007, 13, 5282-5293

© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim



The ethenyl effect on  $\sigma^{p}(Se)$  is predicted to be -495, -447, and -384 ppm for CH<sub>2</sub>=CHSeH (**pl**-A), CH<sub>2</sub>=CHSeH (**pl**-B), and CH<sub>2</sub>=CHSeH (**pd**), respectively, and -370, -370, and -343 ppm for CH<sub>2</sub>=CHSeMe (**pl**-A), CH<sub>2</sub>= CHSeMe (**pl**-B), and CH<sub>2</sub>=CHSeMe (**pd**), respectively, when calculated with the GIAO-DFT method (Table 8). Similarly, the effect for the former is -428, -384, and -335 ppm, respectively, and that for the latter is -334, -328, and -313 ppm, respectively, with the GIAO-MP2 method. The observed  $\Delta \delta(Se - \pi)$  value of *cis*-PhCH= CHSeMe (328 ppm) is very close to that calculated for CH<sub>2</sub>=CHSeMe (**pl**) with the GIAO-MP2 method, although Ph is attached at the *cis* position in the observed compound.

The differences in  $\sigma$ (Se) between **pl** and **pd** conformers correspond to the orientational effects [ $\Delta \sigma$ (Se-or)= $\sigma$ (Se: **pl**)- $\sigma$ (Se: **pd**)]. The  $\Delta \sigma^{p}$ (Se-or) values predicted by the GIAO-DFT method increase in the order CH<sub>2</sub>=CHSeH (A) (-111) < CH<sub>2</sub>=CHSeH (B) (-63) < PhSeH (-43) < CH<sub>2</sub>= CHSeMe (B) (-28)  $\leq$  CH<sub>2</sub>=CHSeMe (A) (-27) < PhSeMe (41 ppm). While  $\Delta \sigma^{p}$ (Se-or) are negative for both CH<sub>2</sub>= CHSeH and CH<sub>2</sub>=CHSeMe, those for PhSeH and PhSeMe are negative and positive, respectively. The replacement of Se-H by Se-Me increases  $\Delta \sigma^{p}$ (Se-or) for these compounds.

How is  $\Delta \sigma^{p}(\text{Se}-\pi)$  explained? We try to explain the effect with the formation of CH<sub>2</sub>=CHSeH (**pl**-B) from CH<sub>3</sub>CH<sub>2</sub>SeH (*C<sub>s</sub>*), where CH<sub>2</sub>=CHSeH (**pl**-B) is related to CH<sub>3</sub>CH<sub>2</sub>SeH (*C<sub>s</sub>*) by the elimination of H<sub>2</sub>. While the  $\psi_i \rightarrow \psi_j$ and  $\psi_i \rightarrow \psi_a$  transitions make contributions to  $\sigma^{p}(\text{Se})$  of CH<sub>3</sub>CH<sub>2</sub>SeH (*C<sub>s</sub>*) of 300 and -1535 ppm, respectively, they contribute 217 and -1595 ppm, respectively, for CH<sub>2</sub>= CHSeH (**pl**-B).<sup>[35]</sup> Scheme 3 summarizes the effect. The  $\Delta \sigma^{p}(\text{Se}-\pi: \psi_i \rightarrow \psi_j)$  and  $\Delta \sigma^{p}(\text{Se}-\pi: \psi_i \rightarrow \psi_a)$  values are -60



Scheme 3. Contributions of the  $\psi_i \rightarrow \psi_a$  and  $\psi_i \rightarrow \psi_j$  transitions in the formation of CH<sub>2</sub>CHSeH (**pl**-B) from CH<sub>3</sub>CH<sub>2</sub>SeH (*C<sub>s</sub>*).

and -83 ppm, respectively (-143 ppm in  $\psi_i \rightarrow \psi_{j+a}$ ). Both  $\psi_i \rightarrow \psi_j$  and  $\psi_i \rightarrow \psi_a$  transitions contribute to  $\Delta \sigma^{p}(\text{Se-}\pi)$  in almost equal magnitudes.

The importance of the  $\psi_i \rightarrow \psi_j$  transitions, as well as the  $\psi_i \rightarrow \psi_a$  transitions, is realized through the application of the utility program. The role of the  $\psi_i \rightarrow \psi_j$  transitions and the behavior of atomic p orbitals are examined next.

**Contributions of**  $\psi_i \rightarrow \psi_j$  and atomic **p** orbitals: Table 9 lists the contributions of  $p_x$ ,  $p_y$ , and  $p_z$  to  $\sigma^p(Se)$  from the  $\psi_i \rightarrow \psi_j$ ,  $\psi_i \rightarrow \psi_a$  and  $\psi_i \rightarrow \psi_{j+a}$  transitions in R<sub>2</sub>Se ( $C_{2\nu}$ : R = H, Me, Et, *n*Pr, *n*Bu, and CH=CH<sub>2</sub>)<sup>[36,37]</sup> and Se<sup>2-</sup>, evaluated by using the utility program. Figure 5 depicts the contributions to  $\sigma^p(Se)$  from the  $\psi_i \rightarrow \psi_j$ ,  $\psi_i \rightarrow \psi_a$ , and  $\psi_i \rightarrow \psi_{j+a}$  transitions for the selenium species.

Atomic p orbitals contributing predominantly to  $\sigma^{p}(Se)$ are exhibited in Figure 5. The pre- $\alpha$  and  $\alpha$  effects of the large downfield shifts are generated by the  $p(\psi \rightarrow \psi_a)$  contributions, the  $\beta$  effect of the downfield shifts originates mainly through  $p(\psi_i \rightarrow \psi_j)$ , and the subtle balance between the  $\psi_i \rightarrow \psi_j$  and  $\psi_i \rightarrow \psi_a$  transitions controls the  $\gamma$  effect. The contributions from  $p_x(\psi_i \rightarrow \psi_j)$ ,  $p_y(\psi_i \rightarrow \psi_j)$ , and  $p_z(\psi_i \rightarrow \psi_j)$ are also depicted in Figure 5. The contributions from  $p(\psi_i \rightarrow$  $\psi_j)$  in the processes leading from Se<sup>2-</sup> to H<sub>2</sub>Se, Me<sub>2</sub>Se, Et<sub>2</sub>Se, and finally *n*Pr<sub>2</sub>Se are mainly controlled by  $p_x(\psi_i \rightarrow$  $\psi_j)$ ,  $p_x(\psi_i \rightarrow \psi_j)$ ,  $p_y(\psi_i \rightarrow \psi_j)$ , and  $p_z(\psi_i \rightarrow \psi_j)$ . The transitions contributing to the pre- $\alpha$ ,  $\alpha$ ,  $\beta$ , and  $\gamma$  effects are well visualized in Figure 5.

How do the atomic p orbitals  $p_x$ ,  $p_y$ , and  $p_z$  contribute to the effects? The total contributions of  $p_x$ ,  $p_y$ , and  $p_z$  were plotted versus those of p (= $p_x+p_y+p_z$ ). The (*a*, *r*) values in

| R                                  |                             | $\mathbf{p}_x$              |                                 |                             | $\mathbf{p}_y$              |                                 |                             | p <sub>z</sub>              |                                 |                             | $p_x + p_y + p$             | z                               |
|------------------------------------|-----------------------------|-----------------------------|---------------------------------|-----------------------------|-----------------------------|---------------------------------|-----------------------------|-----------------------------|---------------------------------|-----------------------------|-----------------------------|---------------------------------|
|                                    | $\psi_i \rightarrow \psi_j$ | $\psi_i \rightarrow \psi_a$ | $\psi_i \rightarrow \psi_{j+a}$ | $\psi_i \rightarrow \psi_j$ | $\psi_i \rightarrow \psi_a$ | $\psi_i \rightarrow \psi_{j+a}$ | $\psi_i \rightarrow \psi_j$ | $\psi_i \rightarrow \psi_a$ | $\psi_i \rightarrow \psi_{j+a}$ | $\psi_i \rightarrow \psi_j$ | $\psi_i \rightarrow \psi_a$ | $\psi_i \rightarrow \psi_{j+a}$ |
| Se <sup>2-[b]</sup>                | 0                           | 0                           | 0                               | 0                           | 0                           | 0                               | 0                           | 0                           | 0                               | 0                           | 0                           | 0                               |
| Н                                  | 128                         | -373                        | -245                            | -121                        | -254                        | -375                            | 343                         | -632                        | -289                            | 350                         | -1259                       | -909                            |
| Me                                 | 319                         | -718                        | -397                            | -277                        | -235                        | -512                            | 433                         | -839                        | -406                            | 475                         | -1790                       | -1315                           |
| Et                                 | 257                         | -690                        | -433                            | -389                        | -209                        | -598                            | 406                         | -861                        | -455                            | 274                         | -1760                       | -1486                           |
| nPr                                | 313                         | -741                        | -428                            | -452                        | -128                        | -580                            | 407                         | -854                        | -447                            | 268                         | -1723                       | -1455                           |
| <i>n</i> Bu                        | 287                         | -715                        | -428                            | -412                        | -168                        | -580                            | 404                         | -856                        | -447                            | 284                         | -1739                       | -1455                           |
| CH <sub>2</sub> =CH <sup>[c]</sup> | 389                         | -875                        | -486                            | -385                        | -222                        | -607                            | 175                         | -752                        | -581                            | 179                         | -1853                       | -1674                           |

Table 9. Contributions of  $p_x$ ,  $p_y$ , and  $p_z$  to  $\sigma^p(Se)$  in  $R_2Se(C_{2y})$ , evaluated separately for  $\psi_i \rightarrow \psi_i$ ,  $\psi_i \rightarrow \psi_a$ , and  $\psi_i \rightarrow \psi_{i+a}$  transitions.<sup>[a]</sup>

[a] Values are given in ppm. [b]  $R_2Se(C_{2\nu}) = Se^{2-}(O_h)$ . [c]  $\sigma^p(Se) = -1720.7$  ppm.

5290 -



Figure 5. Contributions from the  $\psi_i \rightarrow \psi_j$  (•),  $\psi_i \rightarrow \psi_a$  (•),  $\psi_i \rightarrow \psi_{j+a}$  (•) transitions for  $p (=p_x+p_y+p_z)$ , together with the  $\psi_i \rightarrow \psi_j$  transitions for  $p_x$  ( $\odot$ ),  $p_y$  ( $\triangle$ ), and  $p_z$  ( $\Box$ ) to  $\sigma^{p}(Se)$  in Se<sup>2-</sup> ( $O_h$ ) and R<sub>2</sub>Se ( $C_{2v}$ : R=H, Me, Et, *i*Pr, and *i*Bu).

the correlations (y=ax+b, r) were (0.297, 0.998), (0.397, 0.999), and (0.306, 1.000) for  $p_x$ ,  $p_y$ , and  $p_z$ , respectively (not shown). The correlation constants are in the order of  $a(p_y) > a(p_z) \ge a(p_x)$ . Atomic  $4p_x(Se)$ ,  $4p_y(Se)$ , and  $4p_z(Se)$  orbitals construct  $\sigma(R_2Se: a_1)$  of  $n_s(Se)$ ,  $\sigma(R_2Se: b_2)$ , and  $n_p(Se)$  in  $R_2Se(C_{2\nu})$ , respectively.  $\sigma(R_2Se: b_2)$  of  $4p_y(Se)$  tends to extend over the whole molecule, and would thus be responsible for the largest contribution. The results are consistent with the large contribution from the HOMO-2  $(p_y) \rightarrow$  HOMO  $(p_z)$  transition in the  $\beta$  effect in Et<sub>2</sub>Se.

These considerations are supported by the highly extended molecular  $\pi$  orbitals in CH<sub>2</sub>=CHSeCH=CH<sub>2</sub> ( $C_{2\nu}$ ) constructed by p<sub>z</sub>. The contributions from p<sub>x</sub>, p<sub>y</sub>, and p<sub>z</sub> to  $\sigma^{p}(Se)$  are -486, -607, and -581 ppm, respectively, the ratio of which is 0.290:0.363:0.347. The increased contribution from p<sub>z</sub> must be the result of the extended p<sub>z</sub> character over the whole molecule in  $\pi$ (C=C-Se-C=C).

By means of the proposed pre- $\alpha$  effect,  $\delta$ (Se) are analyzed and well understood in a unified style. The importance of the  $\psi_i \rightarrow \psi_j$  transitions is realized through the application of the utility program.

#### Conclusion

How do  $\delta$ (Se) originate in dependence on the structures of selenium compounds? The origin has been clarified on the basis of MO theory, as a first step to establishing plain rules founded in the theoretical background, which are necessary to understand the origin of  $\delta$ (Se) in the structures. A utility program derived from Gaussian03 (NMRANAL-NH03G) was applied for the analysis. The concept of pre- $\alpha$  effect is proposed, which is defined as the downfield shift due to attachment of a proton to a lone-pair orbital of Se. The pre- $\alpha$  effect in H<sub>2</sub>Se is explained by the generation of double  $\sigma$ -(Se–H) and  $\sigma$ \*(Se–H) by the addition of protons at spherical Se<sup>2–</sup>, since Se<sup>2–</sup> was chosen as standard. The double  $\sigma$ -

(Se–H) and  $\sigma^*$ (Se–H) orbitals practically act as  $\sigma(H_2Se: a_1)$ ,  $\sigma(H_2Se: b_2)$ ,  $\sigma^*(H_2Se: a_1)$ , and  $\sigma^*(H_2Se: b_2)$  in  $H_2Se$ , which leads to effective  $\psi_i \rightarrow \psi_a$  transitions, together with  $n_p(Se)$ . The  $\alpha$  effect is the downfield shift caused by the replacement of Se-H with Se-Me. The  $\psi_i \rightarrow \psi_a$  transitions in  $\psi_{24}$ [HOMO-2:  $4p_y(Se)$ ],  $\psi_{25}$  [HOMO-1:  $4p_x(Se)$ ], and  $\psi_{26}$ [HOMO:  $4p_z(Se)$ ] of Me<sub>2</sub>Se must be responsible for the effect. The  $\beta$  effect seems more complex to understand intuitively based on MO theory than is the case for the pre- $\alpha$ and  $\alpha$  effects. The  $\psi_i \rightarrow \psi_a$  transitions do not contribute to the  $\beta$  effect, but the  $\psi_i \rightarrow \psi_i$  transitions do. Although the  $\psi_i \rightarrow \psi_i$  transitions are usually positive, the positive value in Me<sub>2</sub>Se becomes smaller and then negative when the methyl protons in Me<sub>2</sub>Se are successively substituted by Me groups. The  $\gamma$  effect is more complex. The upfield shift is derived from the well-balanced contributions from the  $\psi_i \rightarrow \psi_i$  and  $\psi_i \rightarrow \psi_a$  transitions. A similar subtle balance makes the  $\delta$ 

effect very small. The effect of the  $p(Se)-\pi(C=C)$  conjugation is also derived from a subtle balance. The results presented here will help understand the origin of  $\delta(Se)$ , even for experimental chemists.

Investigations to evaluate the electron population factor  $\langle r^{-3} \rangle$  are in progress. The results, as well as applications, will be reported elsewhere.

#### Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (No. 16550038).

- [2] a) Organic Selenium Compounds: Their Chemistry and Biology (Eds.: D. L. Klayman, W. H. H. Günther), Wiley, New York, 1973;
  b) The Chemistry of Organic Selenium and Tellurium Compounds, Vols. 1 and 2 (Eds.: S. Patai, Z. Rappoport), Wiley, New York, 1986;
  c) Organic Selenium Chemistry (Ed.: D. Liotta), Wiley-Interscience, New York, 1987; d) Organoselenium Chemistry, A Practical Approach (Ed.: T. G. Back), Oxford University Press, Oxford, 1999;
  e) Organoselenium Chemistry Modern Developments in Organic Synthesis, Top. Curr. Chem., Vol. 208 (Ed.: T. Wirth), Springer, Heidelberg, 2000.
- [3] a) W. MacFarlane, R. J. Wood, J. Chem. Soc. Dalton Trans. 1972, 13, 1397–1401; b) H. Iwamura, W. Nakanishi, J. Syn. Org. Chem. Jpn. 1981, 39, 795–804; c) The Chemistry of Organic Selenium and Tellurium Compounds, Vol. 1 (Eds.: S. Patai, Z. Rappoport), Wiley, 1986, Chap. 6; d) Compilation of Reported <sup>77</sup>Se NMR Chemical Shifts (Eds.: T. M. Klapotke, M. Broschag), Wiley, New York, 1996; e) H. Duddeck, Prog. Nucl. Magn. Reson. Spectrosc. 1995, 27, 1–323.
- [4] a) S. Gronowitz, A. Konar, A.-B. Hörnfeldt, Org. Mag. Res. 1977, 9, 213–217; b) G. P. Mullen, N. P. Luthra, R. B. Dunlap, J. D. Odom, J.

#### Chem. Eur. J. 2007, 13, 5282-5293

www.chemeurj.org

### **FULL PAPER**

a) Encyclopedia of Nuclear Magnetic Resonance (Eds.: D. M. Grant, R. K. Harris), Wiley, New York, 1996; b) Nuclear Magnetic Shieldings and Molecular Structure (Ed.: J. A. Tossell), Kluwer Academic, Dordrecht, 1993; c) Calculation of NMR and EPR Parameters; Theory and Applications (Eds.: M. Kaupp, M. Bühl, V. G. Malkin), Wiley-VCH, Weinheim, 2004; d) Spins in Chemistry (Ed.: R. McWeeny), Academic Press, New York, 1970; e) V. G. Markin, O. L. Malkina, L. A. Eriksson, "A Tool for Chemistry" in Modern Density Functional Theory (Eds.: J. M. Seminario, P. Politzer), Elsevier, Amsterdam, 1994; f) Density-functional Methods in Chemistry and Material Science (Ed.: M. Springborg), Wiley, New York, 1977.

#### A EUROPEAN JOURNAL

Org. Chem. 1985, 50, 811-816; c) G. A. Kalabin, D. F. Kushnarev,
V. M. Bzesovsky, G. A. Tschmutova, J. Org. Mag. Res. 1979, 12,
598-604; d) G. A. Kalabin, D. F. Kushnarev, T. G. Mannafov, Zh.
Org. Khim. 1980, 16, 505-512; e) W. Nakanishi, S. Hayashi, T.
Uehara, Eur. J. Org. Chem. 2001, 3933-3943.

- [5] a) S. Hayashi, W. Nakanishi, J. Org. Chem. 1999, 64, 6688-6696;
  b) W. Nakanishi, S. Hayashi, H. Yamaguchi, Chem. Lett. 1996, 947-948;
  c) W. Nakanishi, S. Hayashi, A. Sakaue, G. Ono, Y. Kawada, J. Am. Chem. Soc. 1998, 120, 3635-3640;
  d) W. Nakanishi, S. Hayashi, J. Org. Chem. 2002, 67, 38-48.
- [6] a) W. Nakanishi, S. Hayashi, *Chem. Lett.* **1998**, 523–524; b) W. Nakanishi, S. Hayashi, *J. Phys. Chem. A* **1999**, *103*, 6074–6081.
- [7] W. Nakanishi, S. Hayashi, D. Shimizu, M. Hada, *Chem. Eur. J.* 2006, 12, 3829–3846; S. Hayashi, W. Nakanishi, *Bioinorg. Chem. Appl.* 2006, DOI: 10.1155/BCA/2006/23214, in press.
- [8] Downfield shifts of about 110–170 and 100 ppm are observed for the  $\alpha$  and  $\beta$  effects, respectively, although the values depend on the conditions of measurement, such as solvents (see Table 2).<sup>[3]</sup> The  $\gamma$  effect is an upfield shift of about 30 ppm.<sup>[3]</sup>
- [9] The ethenyl and phenyl effects in the p(Se)-π(C=C) conjugation are reported to be downfield shifts of about 300 and 500 ppm, respectively.<sup>[3]</sup>
- [10] Although the contribution of relativistic terms has been pointed out for heavier atoms, the perturbation would be small for the selenium nucleus: R. Fukuda, M. Hada, H. Nakatsuji, J. Chem. Phys. 2003, 118, 1015–1026; R. Fukuda, M. Hada, H. Nakatsuji, J. Chem. Phys. 2003, 118, 1027–1035; S. Tanaka, M. Sugimoto, H. Takashima, M. Hada, H. Nakatsuji, Bull. Chem. Soc. Jpn. 1996, 69, 953–959; C. C. Ballard, M. Hada, H. Kaneko, H. Nakatsuji, Chem. Phys. Lett. 1996, 254, 170–178; H. Nakatsuji, M. Hada, H. Kaneko, C. C. Ballard, Chem. Phys. Lett. 1996, 255, 195–202; M. Hada, H. Kaneko, H. Nakatsuji, Chem. Phys. Lett. 1996, 261, 7–12.
- [11] a) K. Kanda, H. Nakatsuji, T. Yonezawa, J. Am. Chem. Soc. 1984, 106, 5888–5892; b) Molecular Quantum Mechanics, 3rd ed. (Eds.: P. W. Atkins, R. S. Friedman), Oxford, New York, 1997, Chap. 13.
- [12] This decomposition includes a small degree of arbitrariness due to the dependence on coordinate origin, though it is not detrimental to our chemical analyses and insights into <sup>77</sup>Se NMR spectroscopy.
- [13] The transition from occupied orbitals  $(\psi_i)$  to unoccupied orbitals  $(\psi_a)$  mainly contributes to  $\sigma^p$ . However, that from occupied orbitals  $(\psi_i)$  to occupied orbitals  $(\psi_j)$  sometimes play an important role in  $\sigma^p$ . Such typical cases are detected in the  $\beta$  effect.
- [14] σ<sup>p</sup> and σ<sup>d</sup> are exactly expressed by Ramsey's Equation, and they are approximately calculated in the framework of Hartree–Fock (HF) or DFT theory: N. F. Ramsey, *Phys. Rev.* 1949, 77, 567–575; N. F. Ramsey, *Phys. Rev.* 1950, 78, 699–703; N. F. Ramsey, *Phys. Rev.* 1951, 83, 540–541; N. F. Ramsey, *Phys. Rev.* 1952, 85, 143–144; N. F. Ramsey, *Phys. Rev.* 1953, 91, 303–307; N. F. Ramsey, *Phys. Rev.* 1956, 86, 243–246.
- [15] Based on second-order perturbation theory at the level of the HF and single-excitation CI approximation,  $\mathbf{\sigma}_{_{ra}}^{p}$  on a resonance nucleus N is shown to be proportional to reciprocal orbital energy gap  $(\varepsilon_{a}-\varepsilon_{l})^{-1}$  as expressed in Equation (5), where  $\psi_{k}$  is the *k*-th orbital function,  $\hat{L}_{z,N}$  the orbital angular momentum around the resonance nucleus, and  $r_{N}$  the distance from the nucleus *N*.
- [16] For a similar utility program based on Gaussian 98 (NMRANAL-NH98G), see ref. [7]. The contribution from orbital-to-orbital transitions is separately evaluated for *i*, *j*, and *a* in the  $\psi_i \rightarrow \psi_j$  and  $\psi_i \rightarrow \psi_a$ transitions in NMRANAL-NH98G. That in NMRANAL-NH03G is given after summation over *i* and *j* for the  $\psi_i \rightarrow \psi_j$  transitions.
- [17] Gaussian 03, Revision B.05, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.

Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O.
Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman,
J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski,
B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh,
PA, 2003.

- [18] a) A. D. Becke, *Phys. Rev. A* 1988, *38*, 3098–3100; A. D. Becke, *J. Chem. Phys.* 1993, *98*, 5648–5652; b) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, *37*, 785–789; B. Michlich, A. Savin, H. Stall, H. Preuss, *Chem. Phys. Lett.* 1989, *157*, 200–2006.
- K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251–8260; K. Wolinski, A. Sadlej, Mol. Phys. 1980, 41, 1419–1430;
   R. Ditchfield, Mol. Phys. 1974, 27, 789–807; R. McWeeny, Phys. Rev. 1962, 126, 1028–1034; F. London, J. Phys. Radium, Paris 1937, 8, 397–409.
- [20] C. Möller, M. S. Plesset, *Phys. Rev.* **1934**, *46*, 618–622; J. Gauss, *J. Chem. Phys.* **1993**, *99*, 3629–3643; J. Gauss, *Ber. Bunsenges, Phys. Chem.* **1995**, *99*, 1001–1008.
- [21] For calculations of σ(Se: H<sub>2</sub>Se), see a) W. Kutzelnigg, U. Fleischer, C. van Wüllen, "Shielding Calculations: IGLO Method" in Encyclopedia of Nuclear Magnetic Resonance, Vol. 7, (Eds.: D. M. Grant, R. K. Harris), Wiley, New York, **1996**, 4284–4291; b) P. D. Ellis, J. D. Odom, A. S. Lipton, Q. Chen, J. M. Gulick, "Gas Phase Measurement and ab initio Calculations" in Nuclear Magnetic Shieldings and Molecular Structure (Ed.: J. A. Tossell), Kluwer Academic Publishers, Dordrecht, **1993**, 539–555; c) P. J. Wilson, Mol. Phys. **2001**, 99, 363–367. See also ref. [7].
- [22] The affect on  $\mathbf{o}'(Se)$  in PhSeH and PhSeMe is discussed in ref. [7]. The orientational effect is not so large between the two methods.
- [23] We must be very careful when the observed  $\delta(\text{Se: Se}^{2-})$  is discussed.  $\delta(\text{Se: Se}^{2-})$  is reported to be -511 ppm,<sup>[24a]</sup> which is very close to  $\delta(\text{Se: NaSeH})$  in MeOH (-514 ppm)<sup>[24b]</sup> and close to  $\delta(\text{Se: MaSeH})$   $\text{Me}_4\text{N}^+\text{SeH}^-$ ) in the solid state (-465 ppm).<sup>[24b]</sup>  $\delta(\text{Se: NaSeH})$ changes to -393 ppm in DMF and to -529 ppm in H<sub>2</sub>O.<sup>[24]</sup>
- [24] a) J. D. Odom, W. H. Dawson, P. D. Ellis, J. Am. Chem. Soc. 1979, 101, 5815–5822; b) R. J. Batchelor, F. W. B. Einstein, I. D. Gay, C. H. W. Jones, R. D. Sharma, Inorg. Chem. 1993, 32, 4378; c) D. Rabinovich, G. Parkin, Inorg. Chem. 1993, 32, 4378–4383.
- [25] The solvent effect on  $\delta$ (Se: H<sub>2</sub>Se) is also large: it is -331.7 ppm in the gas phase, whereas it is -226.8 ppm in CDCl<sub>3</sub> and -288 ppm in D<sub>2</sub>O.
- [26] Equation (9) shows the correlation of similar plots for the data in Tables 2 and 8, containing those for Se<sup>2–</sup>, HSe<sup>–</sup>, H<sub>2</sub>Se, and H<sub>3</sub>Se<sup>+</sup>. The (*a*, *r*) values are (1.14, 0.997). The point for Se<sup>2–</sup> deviates above the correlation line, that is, the pre- $\alpha$  effect evaluated with the GIAO-DFT method will be more than 1.14 times larger than that based on the GIAO-MP2 method. A similar trend is also suggested for the  $\alpha$  effect.

 $\sigma^{t}(B3LYP) = 1.141 \,\sigma^{t}(MP2) - 493.2 \,(n = 29, r = 0.997) \tag{9}$ 

- [27] The  $\psi_i \rightarrow \psi_j$  transition should be described as  $\psi_i \rightarrow \psi_j$   $(j \neq i)$ . However, we write it as  $\psi_i \rightarrow \psi_j$ , since the contribution from the  $\psi_i \rightarrow \psi_i$  transition is intrinsically zero.
- [28] In the case of H<sub>2</sub>Se,  $\psi_{16}$ ,  $\psi_{17}$ , and  $\psi_{18}$  are mainly constructed by  $4p_y(Se)$ ,  $4p_x(Se)$ , and  $4p_z(Se)$ , respectively;  $\psi_7$ ,  $\psi_8$ , and  $\psi_9$  by  $3p_y(Se)$ ,  $3p_x(Se)$ , and  $3p_z(Se)$ , respectively; and  $\psi_3$ ,  $\psi_4$ , and  $\psi_5$  by  $2p_y(Se)$ ,  $2p_x(Se)$ , and  $2p_z(Se)$ , respectively.
- [29] The contributions of  $np_y(Se)$ ,  $np_x(Se)$ , and  $np_z(Se)$  (n=2, 3, and 4) to  $\psi_i$  in Me<sub>2</sub>Se are essentially the same as in the case of H<sub>2</sub>Se, although  $\psi_6$  and  $\psi_7$  are constructed by two 1s(C).
- [30] As expressed in Equation (5),  $\sigma^{p}(\text{Se})$  are mainly controlled by the reciprocal orbital energy gaps  $(\varepsilon_{j}-\varepsilon_{j})^{-1}$ , the  $r_{N}^{-3}$  terms, and the overlap integrals containing the angular momentum operator  $\hat{L}$ .
- [31] While the point corresponding to  $nPrSe^{-}(C_s)$  is almost on the correlation line in Figure 4, that for  $nPrSe^{-}(g)$  deviates above the line. This must be due to the very large upfield contribution from the  $\psi_i \rightarrow \psi_i$  transition in  $nPrSe^{-}(g)$ .

- [32] Since CH<sub>2</sub>=CHSeH (pd) is not a minimum, the dihedral angle of C<sub>2</sub>C<sub>1</sub>SeH was fixed at 90.0° in the optimization. Calculations on CH<sub>2</sub>=CHSeMe (pd) were performed similarly.
- [33] The relative energies of CH<sub>2</sub>=CHSeH (**pl**-A), CH<sub>2</sub>=CHSeH (**pl**-B), and CH<sub>2</sub>=CHSeH (**pd**)<sup>[32]</sup> are predicted to be 0.0, 0.4, and 7.9 kJ mol<sup>-1</sup>, respectively, when calculated at the DFT level, and those of the first two are 0.0 and 1.0 kJ mol<sup>-1</sup> at the MP2 level.
- [34] The relative energies of CH<sub>2</sub>=CHSeMe (**pl**-A), CH<sub>2</sub>=CHSeMe (**pl**-B), and CH<sub>2</sub>=CHSeMe (**pd**)<sup>[32]</sup> are 0.0, 7.9, and 14.7 kJ mol<sup>-1</sup>, respectively, at the DFT level, and those of the first two are 0.0 and 7.4 kJ mol<sup>-1</sup>, respectively, at the MP2 level.
- [35] Table S1 in the Supporting Information collects the contributions from each  $\psi_i$  to  $\sigma^{\rm p}({\rm Se})$  and the components ( $\sigma^{\rm p}({\rm Se})_{xx}$ ,  $\sigma^{\rm p}({\rm Se})_{yy}$ , and  $\sigma^{\rm p}({\rm Se})_{zz}$ ) in CH<sub>2</sub>=CHSeH (**pl**-A), CH<sub>2</sub>=CHSeH (**pl**-B), CH<sub>2</sub>=CHSeH (**pd**), and CH<sub>3</sub>CH<sub>2</sub>SeH ( $C_s$ ), together with the energies ( $\varepsilon_i$ ) and the characters of  $\psi_i$ .
- [36] The  $\psi_i \rightarrow \psi_{j+a}$  contributions to  $\sigma^p(Se)$  of these compounds, given in Table 9, are contributed from the atomic p, d, and f orbitals in the basis sets for the calculations.
- [37] The ψ<sub>i</sub>→ψ<sub>i+a</sub> contributions from p (=p<sub>x</sub>+p<sub>y</sub>+p<sub>z</sub>) in Table 9 were plotted versus those in Tables 2 and 6, which correspond the contributions from (p+d+f), for Se<sup>2-</sup> and R<sub>2</sub>Se (C<sub>2y</sub>, R=H, Me, Et, *n*Pr, *n*Bu, and CH<sub>2</sub>=CH). The correlation is given in Equation (10). σ<sup>p</sup>(p)=0.976 σ<sup>p</sup>(p+d+f)-0.3 (n=7, r=1.000) (10) The correlation is obtained with more significant figures than those in the tables. The results show that atomic p orbitals in ψ<sub>i</sub> are the origin of about 98% of σ<sup>p</sup>(Se) (a=0.976) by the basis sets in the calculations.
- [38] D. Rabinovich, G. Parkin, Inorg. Chem. 1994, 33, 2313-2314.
- [39] N. P. Luthra, R. B. Dunlap, J. D. Odom, J. Magn. Reson. 1983, 52, 318–322.
- [40] N. P. Luthra, A. M. Boccanfuso, R. B. Dunlap, J. D. Odom, J. Organomet. Chem. 1988, 354, 51.

Received: December 13, 2006 Published online: April 16, 2007